Dear Editor and referees,

Before providing our answers to the referees’ comments, we need to make the Editor and the referees aware of a change in the manuscript we have decided to introduce because of a new article, which has just been published in Quaternary Science Reviews (Koch et al., 2019). We felt that it is important to mention the finding of that article in our paper because of the possible consequences on the interpretation of the greenhouse gas records. Therefore, we have added a sentence at page 15 line 13-16: “Rubino et al. (2016) showed that the simultaneous COS increase during the LIA confirms that the LIA CO₂ decline was caused by net terrestrial uptake due to cooling (heterotrophic respiration declining more than Gross Primary Production, due to its higher sensitivity on temperature changes), though a very recent paper estimating the amount of carbon taken up by land use change following the colonisation of the Americas by the Europeans (Koch et al., 2019) provides a different view. Nonetheless, the multi-species approach used by Rubino et al. (2016, e.g. using trends of CO₂, δ¹³C-CO₂ and COS) can provide multiple constraints to help understand the biogeochemical processes behind atmospheric CO₂ variations over the recent past.”, and a sentence at page 17 lines 23-26: “The emissions from anthropogenic land use change have also been quantified for each world region (Pongratz and Caldeira, 2012, see Fig. 6e), and can be used to subtract the human contribution from the total CO₂ change, even though there is a debate on the amount of land use change following the European colonisation of the Americas (Koch et al., 2019).”
We thank Referee #1 to support publication of our paper. In the following, we address the referee’s comments in the order of appearance in the annotated manuscript.

Page 2, line 1 (of the manuscript with no track changes revisions)

Comment from referee: The referee has highlighted the text “(GHGs, including halocarbons)” of the following sentence in the manuscript “The three well-mixed atmospheric greenhouse gases (GHGs, including halocarbons) that contribute the most to current global warming are CO$_2$, CH$_4$ and N$_2$O.” and has commented: “there is a contradiction here as the sentence refers to only three GHGs.”

Author’s response: The sentence refers to only three GHGs, as the referee correctly points out, because our study does not include another group of well-mixed GHGs that is halocarbons. We agree with the referee that the sentence could be misleading. We believe there is no need to mention these “synthetic greenhouse gases”, as the radiative forcing of even the largest one, CFC-12, was below that of N$_2$O for all but 1984-2008. CO$_2$, CH$_4$ and N$_2$O are the long lived GHGs that contribute most to “current” global warming.

Author’s changes in manuscript: We have changed the sentence at page 2 lines 1-2 to: “The three well-mixed (long-lived) atmospheric greenhouse gases (GHGs) that contribute the most to current global warming are CO$_2$, CH$_4$ and N$_2$O.”

Page 5, line 2 (of the manuscript with no track changes revisions)

Comment from referee: “This paragraph needs a map which depicts the different ice core sites, the accumulation distribution and the wind direction”

Author’s response: We agree with the referee that a map would help the reader, so we have produced a map of Law Dome, which is now figure 1. The other figures numbers have been changed accordingly.

Author’s changes in manuscript: A reference to Figure 1 has been added at page 5 line 8 “The ice cores used in this study, referred to as DE08, DE08-2, DSS and DSS0506, were drilled at Law Dome, East Antarctica (Fig. 1).” Also, the figure caption for figure 1 describes the map: “Figure 1: Map of the Law Dome region, slightly modified from Smith et al. (2000), showing the location of the drilling sites DE08, DE08-2, DSS, DSS0506 and DSSW20K discussed in the text. Dotted lines are accumulation isopleths (kg m$^{-2}$ yr$^{-1}$) and unbroken lines are elevation contours (meters above sea level). The inset shows the location of the region in Antarctica”

Page 5, line 8 (of the manuscript with no track changes revisions)

Comment from referee: The referee has highlighted the text “Re-working of the accumulated snow is minimal as high wind speeds are relatively infrequent and the snow surface is smooth.” and has commented “I question this statement, there is always wind re-working. You could, however, say that the wind re-working is not able to erase annual layers”

Author’s response: We agree with the referee that our sentence can be improved to describe wind conditions at Law Dome more accurately.

Author’s changes in manuscript: We have modified the sentence at page 5 lines 11-13 to: “Re-working of the accumulated snow is insufficient to erase annual layers as high wind speeds are
relatively infrequent. The resulting annual layering is thick and regular and preserved for much of the ice thickness (van Ommen et al., 2005)."

Page 6, line 5 (of the manuscript with no track changes revisions)

Comment from referee: The referee has highlighted the text “ice grown with no visible bubbles in it” and has commented “this is too vague, how exactly do you produce this ice?”

Author’s response: A detailed explanation of how BFI is produced has been provided in previously published article, such as Rubino et al. (2013). Here, we report a short explanation and introduce a reference to Rubino et al. (2013).

Author’s changes in manuscript: We have added a sentence at page 6 lines 12-17 to explain how BFI is produced: “BFI is grown in ICELAB by keeping a container filled with deionized water in thermal equilibrium, in order to grow ice as slowly as possible from the bottom to the top of the container. The container features Plexiglass sidewalls that are electrically heated. The water exchanges heat only through the metallic base and freezes from the bottom to the top. If the process is slow enough, the produced ice is free of visible bubbles. The results of the tests performed on ICELAB-BFI, as well as on other, externally grown BFI, have been extensively described by Rubino et al. (2013).”

Page 6, line 25 (of the manuscript with no track changes revisions)

Comment from referee: The referee has highlighted the text “condensable gases and to extract CO₂ (plus N₂O) from air. The residual CO₂ (and N₂O) is injected into the MAT252 ion source via” and has commented “you have to describe somewhere how you correct for the N₂O interference in the mass spec (chemical slope calibration)”

Author’s response: A detailed explanation of how the N₂O correction is performed has been provided in previously published article, such as Allison and Francey (2007). Here, we report a short explanation citing Allison and Francey (2007).

Author’s changes in manuscript: We have added a sentence at page 7 lines 4-7 to explain how the N₂O correction is performed: “Nitrous oxide (N₂O) has identical molecular masses to CO₂ and interferes with the isotopic analyses. To remove this interference, a correction is made to the IRMS output in GASLAB using the relative ionisation efficiency of N₂O and CO₂, the isotopic composition of N₂O and the measured N₂O and CO₂ concentration, as described in detail by Allison and Francey (2007).”

Page 8, lines 17-21 and page 11, lines 12-15 (of the manuscript with no track changes revisions)

Comment from referee: At page 8, line 17-21, the referee has highlighted the text: “Francey et al. (1999) estimated statistical and systematic δ¹³C-CO₂ biases between 0.025 and 0.07 ‰, and uncertainties of up to ±0.05 ‰, but found an unexplained discrepancy of up to 0.2 ‰ (Trudinger, 2000, section 3.8) around 1900 AD from the South Pole δ¹³C-CO₂ firn record measured at NOAA-INSTAAR (National Oceanic and Atmospheric Administration-Institute of Arctic and Alpine Research, Boulder, Colorado).” and has commented “is it worrysome that the Bauska data agree better with the uncorrected Francey data than with the revised data by Rubino (see below)? Note that the Bauska data for the last glacial termination also agree within error limits with the data by Schmitt et al., 2012. This needs more discussion”. At page 11, line 12-15, the referee has highlighted the text: “It is important to resolve the difference between the Law Dome and the WAIS d¹³C-CO₂ records to establish a Pre-Industrial baseline and, thus, a Pre-Industrial-to-Industrial d¹³C-CO₂ difference, as well as a Pre-Industrial to Last Glacial Maximum δ¹³C-CO₂ difference. These could be
useful values 15 for biogeochemical interpretation (Broecker and McGee, 2013; Krakauer et al., 2006).” and has added a comment which reminds to the comment at page 8, line 17-21: “see comment above on the offsets between different d13C records”.

Author’s response: We completely agree with the referee that it is worrisome that the Bauska δ13C data do not agree with the Rubino et al. δ13C dataset, which has revised the Francey et al. δ13C dataset and resolved the discrepancy between the Law Dome and South Pole δ13C records. Because of the way we have decided to structure our paper (section 3.1 shows the old Law Dome datasets, whereas section 3.2 shows the new Law Dome records and how they compare with records from other sites), we believe it is more appropriate to add the discussion suggested by the referee in section 3.2 at page 11 lines 24-32.

Author’s changes in manuscript: We have modified the discussion at page 11 line 33 – page 12 line 10 to address the referee’s comment: “The Bauska et al. (2015) record agrees within uncertainties with the Francey et al. (1999) dataset. However, Rubino et al. (2013) is the only record to show consistency with all firn records and direct atmospheric measurements (see Figs 3c and 5a). This would suggest that the Rubino et al. (2013) is currently the most accurate record and should be used to set a pre-industrial baseline. However, no definite conclusion can be drawn until a thorough intercomparison study is carried out between the labs that have produced the WAIS and the Law Dome δ13C-CO2 datasets (Oregon State University-University of Colorado-Institute of Arctic and Alpine Research, INSTAAR and CSIRO). It is important to resolve the difference between the Law Dome and the WAIS δ13C-CO2 records in order to establish a Pre-Industrial baseline and, thus, a Pre-Industrial-to-Industrial δ13C-CO2 difference. Setting a Pre-Industrial baseline could have consequences on the Last Glacial Maximum-to-Pre-Industrial δ13C-CO2 difference as well (Schmitt et al., 2012). These values are useful for biogeochemical interpretation (Broecker and McGee, 2013; Krakauer et al., 2006).”

Page 9, line 1-2 (of the manuscript with no track changes revisions)

Comment from referee: The referee has highlighted the text: “[In doing so, they resolved the 0.2 ‰ discrepancy found between the Law Dome δ13C-CO2 record and the South Pole δ13C-CO2 firn record.]” and has commented: “these d13C offsets are the most important discrepancies, it may be worthwhile to show the South Pole data”

Author’s response: We agree with the referee that the δ13C difference between the Law Dome ice core record and the South Pole firn record was the most important discrepancy found between datasets from different sites. However, we feel that this issue has been extensively discussed in the Rubino et al. (2013) paper. Also, showing the South Pole firn data in figure 2 (where the only other firn record is shown, now figure 3) would be out of context, as the figure only shows ice and firn data from Law Dome. Therefore, we have added an extra plot (figure 5) with the South Pole firn data and a reference to the Rubino et al. (2013) paper for further details.

Author’s changes in manuscript: We have added a line at page 9, line 16-18: “[In doing so, they resolved the 0.2 ‰ discrepancy found between the Law Dome δ13C-CO2 record and the South Pole δ13C-CO2 firn record (the South Pole firn records have been reported in Fig 5, but see Rubino et al., 2013, for more details)]”

Page 9, lines 14-23 (of the manuscript with no track changes revisions)

Comment from referee: The referee has highlighted the text:
To investigate changes in Pre-Industrial sources of CH₄, Ferretti et al. (2005) produced a record of δ¹³C-CH₄ in Law Dome ice covering the last 2000 years (not shown). They reported unexpected changes of the global CH₄ budget, mainly attributed to variations of biomass burning emissions during the Late Pre-Industrial Holocene (LPIH) through an atmospheric box model (Lassey et al., 2000). The δ¹³C-CH₄ record from Ferretti et al. (2005) has not been included in ICEBASE because the air samples extracted in ICELAB were measured on a mass spectrometer not maintained by CSIRO-GASLAB. Therefore, the δ¹³C-CH₄ data are not on a CSIRO calibration scale.

- Park et al. (2012) measured oxygen and intramolecular nitrogen isotopic compositions of N₂O (not shown) covering 1940 to 2005 in Law Dome firn air and archived air samples from Cape Grim (Tasmania). In doing so, they confirmed that the rise in atmospheric N₂O levels is largely the result of an increased reliance on nitrogen-based fertilizers. These measurements are not included in ICEBASE either.

Author’s response: It is tempting to include the δ¹³C-CH₄ and δ¹⁵N-N₂O records in our database, but, as the referee has correctly points out, those data have not been produced in CSIRO GASLAB. Therefore, we have no control over them. We have written this paper to make the scientific community aware of the updates we have performed on our CO₂/δ¹³C-CO₂, CH₄ and N₂O dataset, and to explain how the dataset has been produced and revised. One of the main reasons to revise and publish these records was because our CO₂, CH₄ and N₂O data were used in the Meinshausen et al. (2017) compilation and δ¹³CO₂ in the Graven et al compilation for CMIP6 (we say this in the Introduction), whereas we are not aware of CH₄ or N₂O isotopes being used in CMIP6. The risk of introducing records that are not treated in the same way as the CSIRO data is that we raise confusion among people using the datasets. The Ferretti (not Mischler as the referee writes) and Park data can be downloaded from different repositories and will always be available to the scientific community, independently from the updates of the Law Dome datasets we will release from time to time.

Page 10, line 11 (of the manuscript with no track changes revisions)

Comment from referee: The referee has highlighted the text: “Comparison with records from other cores show general agreement, but also a number of unexplained discrepancies.” and has commented “too vague”

Author’s response: This sentence is vague because it is just an introduction to the following list of bullet points. We has replaced it with a clearer sentence.

Author’s changes in manuscript: We have modified the sentence at page 10 line 27: “The following list compares the new Law Dome records with records from other sites and discusses the main differences:”

Page 10, lines 30-32 (of the manuscript with no track changes revisions)

Comment from referee: The referee has highlighted the text: “The difference is even more surprising when the tight agreement between the Law Dome CH₄ record and the WAIS CH₄ record (Mitchell et al., 2011) around this time is considered (compare red circles and grey squares in Fig. 3c).” and has commented “I don’t really understand this argument. The CO₂ and CH₄ measurements are independent and in case of Mitchell even the gas extraction is separate from that of CO₂”
Author’s response: The CO₂ and CH₄ measurements are mostly independent from each other in terms of measurement technique, but their comparison allows us to test whether the two sites of Law Dome and WAIS are providing consistent records in terms of smoothing of the atmospheric signal. The fact that the CH₄ records are consistent, whereas the CO₂ records show significant differences points towards a problem with CO₂, rather than issues related to poor understanding of the site (dating, firn smoothing, etc...). In other words, the consistency between the Law Dome and the WAIS CH₄ records is evidence of

1. Consistent dating (ice age and gas age)
2. Similar smoothing of the atmospheric signals at the two sites ([ice age-gas age and gas age distribution]).

Therefore, the differences found in the CO₂ records are hard to explain with issues of dating uncertainty, as partly claimed by Ahn et al. (2012), or differences in smoothing of the atmospheric signals between the two sites. This supports a chemical origin of the discrepancies (in-situ production), which is more likely to occur for CO₂ than for CH₄.

That said, the comment of the reviewer has alerted us that the way we have phrased our explanation is not very clear. Therefore, we have modified the text to make it easier to understand.

Author’s changes in manuscript: We have modified the sentence a line at page 11 lines 16-18, by adding: “The consistency between the Law Dome and the WAIS CH₄ record rules out dating issues or large differences in smoothing of the atmospheric signals between the two sites. This suggests a chemical origin (in-situ production) of the CO₂ discrepancies, which is more likely to occur for CO₂ than for CH₄.”

Comment from referee: The referee has highlighted the text: “Interestingly, the LIA CH₄ decrease measured at NEEM appears to start before the CH₄ decrease measured at Law Dome/WAIS, suggesting that the LIA event had an effect on the Northern Hemisphere CH₄ concentration first, and then propagated to the Southern Hemisphere.” and has commented “Is such a multidecadal lag really possible from a CH₄ cycle/atmospheric mixing point of view? You could check this using a multi-box model. It looks more like an age scale issue as the Mitchell record is shifted to younger ages compared to Law Dome in this time interval.”

Author’s response: We thank the referee for this important comment, which has compelled us to think about this issue carefully. We have updated the original NEEM CH₄ gas age scale published in Rhodes et al. (2013), with the new NEEM ice age scale published in Sigl et al. (2015) and the revised delta_age (gas age-ice age) after Buizert et al. (2014). The different timing is now partially resolved (15 years now, instead of 30 years). Having added the CH₄ GISP2 record (as suggested by reviewer 2), we have commented on how the Northern (GISP2) and Southern (WAIS) records have been synchronised by Mitchell et al. (2013) based on the reasoning that “The multidecadal events observed in both ice core records must have occurred simultaneously since the durations of the events were much larger than the atmospheric mixing time (~1 year).” There are multiple possible reasons, associated with the differences of the sites and/or the sampling resolution of the records, to explain the discrepancy found between Northern (NEEM) vs Southern (Law Dome/WAIS) Hemisphere CH₄ records, as discussed in the following:

- **Age scale issues**, as suggested by the referee. Usually, age scale issues are not very significant for the last centuries. Over such a short time scale, the age of the ice is
established through annual layer counting. However, there can be significant uncertainty associated with the \(\Delta \) age (ice age-gas age).

- **Smoothing of the atmospheric signals due to air diffusion in the firn open porosity.** As shown for the Law Dome \(\text{CO}_2 \) record smoothed through the gas age distribution of DML in Figure 2 of Rubino et al. (2016), the smoothing causes a shift in age of the max and min values of the LIA \(\text{CO}_2 \) decrease. For the Law Dome vs DML comparison, the shift amounts to a few years. NEEM has higher accumulation than DML, so firn smoothing should cause an even smaller shift.

- **Inadequate sampling resolution.** The NEEM \(\text{CH}_4 \) records plotted in figure 3 (now figure 4) is a 5 year average of the high resolution record published in Rhodes et al. (2013). The Law Dome \(\text{CH}_4 \) record has a lower sampling resolution (5 datapoint over a 30-year period of decreasing \(\text{CH}_4 \) concentration, so on average 1 datapoint every 6 years). By increasing the sampling resolution, it is possible that the time shift between the NEEM and the Law Dome \(\text{CH}_4 \) event decreases.

A thorough investigation of the cause of the differences in the LIA \(\text{CH}_4 \) event in the Northern (as recorded in NEEM) and the Southern (as recorded in Law Dome/WAIS) Hemisphere is out of the scope of our paper. However, in the future, this discrepancy should be resolved to obtain a precise synchronisation of all ice core records available over the LIA.

Author’s changes in manuscript: We have modified the discussion at page 12 lines 18-27 (now page 12, lines 10-20): “The age scale of the NEEM \(\text{CH}_4 \) record published in Rhodes et al. (2013) has been revised with the updated ice age scale published in Sigl et al. (2015) and the new estimate of \(\Delta \) age provided by Buizert et al. (Buizert et al., 2014). Mitchell et al. (2013) have synchronised the GISP2 \(\text{CH}_4 \) record with the WAIS \(\text{CH}_4 \) record to investigate changes of the Inter Polar Difference in the Pre-Industrial based on the reasoning that “the multidecadal events observed in both ice core records must have occurred simultaneously since the durations of the events were much larger than the atmospheric mixing time (~1 year)” (Mitchell et al., 2013). The NEEM \(\text{CH}_4 \) record has not been synchronised with the others, and there are multiple possible reasons, including age scale issues, different smoothing of the atmospheric signals at the different sites and inadequate sampling resolution, to explain the discrepancy found between the NEEM and the GISP2/Law Dome/WAIS \(\text{CH}_4 \) records during the LIA. A thorough investigation is out of the scope of this paper, but, in the future, this discrepancy should be resolved to obtain a precise synchronisation of all ice core records available over the LIA.”.

Page 12, lines 20-25 (of the manuscript with no track changes revisions)

Comment from referee: The referee has highlighted the text: “Considering that:

- All GHG records in ice cores are a smoothed representation of the real atmospheric history;
- DSS is the highest accumulation rate site ever sampled in Antarctica recording the LIA \(\text{CO}_2 \) event;
- There is the risk that the WAIS core is affected by in-situ production of \(\text{CO}_2 \);
- Accurate \(\text{CO}_2 \) record have not been derived from Greenland ice cores

we suggest that there is a need to sample a new, clean and deep ice core from Law Dome, to recover the real atmospheric LIA \(\text{CO}_2 \) decrease and other rapid changes in atmospheric composition during Pre-Industrial millennia.” and has commented “this would fit better into the conclusions”
Author’s response: We agree with the referee.

Author’s changes in manuscript: We have moved the sentence from page 12 lines 20-25 to page 18 lines 16-23.

Page 13, lines 2-3 (of the manuscript with no track changes revisions)

Comment from referee: The referee has highlighted the text: “processes removing GHGs from the atmosphere (sinks)” and has commented “typically we do not talk about sinks in the case of CO₂ as for the carbon cycle there is not really a destruction of the molecule but a constant exchange of carbon between different reservoirs”

Author’s response: We agree with the referee that since there is no destruction of CO₂ in the atmosphere, then, strictly speaking, there is no “sink” in the case of CO₂. However, the general biogeochemical literature uses the word “sink” to signify a process removing GHGs, including CO₂, from the atmosphere (e.g. information from the Global Carbon Project https://www.globalcarbonproject.org/). Thus, we have decided to leave the sentence unaltered.

Page 13, line 29 (of the manuscript with no track changes revisions)

Comment from referee: The referee has highlighted the text: “recent” and has commented “unclear”

Author’s response: To clarify, the word “recent” here means over the last decades, as opposed to the records from ice cores covering the last centuries/millennia.

Author’s changes in manuscript: We have replace the word “recent” now at page 15 line 4 with “over the last decades”.

Page 14, lines 21-22 (of the manuscript with no track changes revisions)

Comment from referee: The referee has highlighted the text: “tropospheric species [OH], oxidation by stratospheric species [OH, Cl and O(1D)], and oxidation in soils are the main sinks.” and has commented “marine boundary layer Cl sink”

Author’s response: We thank the reviewer to have reminded us of this sink.

Author’s changes in manuscript: We have added the text “and reactive chlorine in the marine boundary layer” at page 15 line 33.

Page 14, line 33 (of the manuscript with no track changes revisions)

Comment from referee: The referee has highlighted the text: “hypothesis of an early anthropogenic influence” and has commented “the use of this expression is misleading here, as the “early anthropogenic influence hypothesis” by Ruddiman refers to a much earlier increase. Please change the wording.”

Author’s response: Generally, the “early anthropogenic hypothesis” refers to the explanation of an influence on the changes of atmospheric CO₂ and CH₄ concentration during the Holocene, originally suggested by Ruddiman. In some of his papers, Ruddiman also discusses the influence of human activities on the atmospheric CO₂ and CH₄ concentration during the Little Ice Age. Therefore, the “early anthropogenic hypothesis” can also refer to any pre-industrial alteration of the atmospheric chemical composition caused by human activities. However, to avoid confusion, we follow the referee’s suggestion.
Author’s changes in manuscript: We have modified the text at page 16 line 11 to “supporting the hypothesis of a pre-industrial anthropogenic influence on atmospheric CH₄”.

Page 15, lines 9-10 (of the manuscript with no track changes revisions)

Comment from referee: The referee has highlighted the text: “As already mentioned, the Pre-Industrial inter-hemispheric N₂O difference is also poorly constrained.” and has commented “I doubt this can be resolved, as it is extremely small due to the long life-time of N₂O”

Author’s response: We agree with the referee that the Inter-hemispheric N₂O difference is small and we would need very high precision ice core measurements to resolve it. However, with the development of new analytical techniques, it could become feasible. Therefore, we have decided to leave the sentence unaltered.

Page 16, lines 1-4 (of the manuscript with no track changes revisions)

Comment from referee: The referee has highlighted the text: “There are regional (Mann et al., 2008), continental (Pages2k, 2013) and hemispheric (Neukom et al., 2014) temperature reconstructions that can be used in Coupled Carbon Cycle-Climate Models to quantify the contribution from each region to the total CO₂ decrease (Fig. 4b).” and has commented “the wording is weird. It is not clear how the reconstructions could be "Used in Coupled Climate Models", the provide a benchmark”

Author’s response: We are just suggesting that regional temperature reconstructions could be used as “forcing” for models describing the relationship between climate and carbon cycle to quantify the regional contribution to the total CO₂ change recorded through the LIA.

Author’s changes in manuscript: We have modified the sentence at page 17 line 17: “There are regional (Mann et al., 2008), continental (Pages2k, 2013) and hemispheric (Neukom et al., 2014) temperature reconstructions that can be used to drive models describing the relationship between climate and carbon cycle to quantify the contribution from each region to the total CO₂ decrease”.

Page 16, lines 11-13 (of the manuscript with no track changes revisions)

Comment from referee: The referee has highlighted the text: “The consequences of the LIA climatic changes on contemporary societal development are important for understanding why different communities were more or less vulnerable, resilient or even adaptive (Degroot, 2018), and plan future choices accordingly.” and has commented “This is a little far fetched as all societies today have technical means that were not available during the LIA. So it can be questioned, whether we really learn something from the LIA about societal resilience.”

Author’s response: We agree with the referee that current societies have more advanced technical means than in the LIA. However, the ability of a society to adapt to climate change will not depend on technical means only. Political and socio-economic factors will influence how efficiently our society will adapt to future climate change. So, being able to quantify which regions have been more vulnerable to past climate change, also in terms of the response of the natural carbon cycle, could help plan future adaptation strategies.

Author’s changes in manuscript: To put our statement into perspective, we have modified the sentence at page 17 lines 29-31: “The consequences of the LIA climatic changes on societal development are important for understanding why different communities were more or less vulnerable, resilient or even adaptive (Degroot, 2018). Being able to quantify which regions have
been more vulnerable to past climate change, also in terms of the response of the natural carbon cycle, could help plan future adaptation strategies.

Page 16, lines 15-16 (of the manuscript with no track changes revisions)

Comment from referee: The referee has highlighted the text: “(δ¹³C-CO₂, δ¹⁵N-N₂O, δ¹⁸O-N₂O)” and has commented “here you refer to the isotopes of all greenhouse gases, but you only store δ¹³CO₂ in your database (see comment above).”

Author’s response: A few lines below (page 16, lines 17-18) we have clearly stated that, of all the isotopic records, only the δ¹³C-CO₂ is constantly being updated and revised. However, to avoid confusion, we have removed the records that are not stored in the database.

Author’s changes in manuscript: We have modified the sentence at page 18, lines 2-3: “The records of GHG (CO₂, CH₄, N₂O) concentrations and the isotopic composition of CO₂ (δ¹³C-CO₂) from the Law Dome ice cores are one of the most important sources of information for models trying to predict the future behaviour of biogeochemical cycles and their influence on the climate system.”

Supplement page 2

Comment from referee: The referee has highlighted the text: “derive the gas-age from the ice-age-
vs-gas-age difference for ice samples and gas-age vs depth for firn samples” and has commented “it is not clear how this is done (firn modeling). Please elaborate on this somewhere in the supplement”

Author’s response: An extensive description of how gas age is attributed to ice and firn samples has been provided in past papers. For firn, the dating is based on the firn model, but for ice samples the gas-age – ice age is based on a number of factors, including firn modelling.

Author’s changes in the Supplement: We have added the following line to the text at page 2: “For firn samples, the dating is based on the firn air diffusion model, whereas for ice samples it is based on a number of factors, including firn model (Trudinger et al., 2013)”.

Supplement page 4

Comment from referee: The referee has highlighted the text: “The blank correction is quantified by the average deviation of replicated BFI/Blanks measured concentration and isotopic composition from the expected value (i.e.: the value associated with the reference gas used). A blank correction is calculated for each period when the conditions of preparation/storage/extraction are the same. In other words, a new blank correction is calculated each time any of the factors (operator, freezer, temperature of cold room, duration of extraction, etc...) that are believed to influence preparation/storage/extraction changes. The blank correction has an uncertainty associated with it, given by the standard deviations of differences from the expected value.” and has commented: “how large is this blank correction typically for the different measured species”

Author’s response: We agree with the referee that it is useful for the reader to have an idea of the size of the blank correction, so we have added the best estimate for each species.

Author’s changes in the Supplement: We have added a sentence at page 4: “The blank correction can vary significantly depending on the conditions of the extraction line and on how experienced the line operator is. Typical values are within the following ranges: 0.5-1.5 ppm (uncertainty 0.5-2 ppm, 1σ) for CO₂, 3-10 ppb (uncertainty 3-15 ppb, 1σ) for CH₄, 0.5-3 ppb (uncertainty 0.5-4 ppb, 1σ) for N₂O and 0.03-0.1 ‰ (uncertainty 0.04-0.13 ‰, 1σ) for δ³¹C-CO₂.”
Comment from referee: The referee has highlighted the text: “The gravity correction: Gravitational enrichment of heavier species in air in the firn open porosity (Craig et al., 1988; Schwander et al., 1988) has different effects depending on the difference between the mass of the measured species and the average mass of air: \[X_{\text{corr}} = 10^{-3} \times \delta^{15}N \times (MX - \text{Mair}) \times [X]_{\text{meas}} \] where \(X \) is the measured species (i.e.: \(\text{CH}_4, \text{CO}_2 \) and \(\text{N}_2\text{O} \)), "corr" and "meas" stands for corrected and measured respectively, and \(\delta^{15}N \) is the isotopic ratio of molecular nitrogen (\(\text{N}_2 \)) in firn. For \(\delta^{13}C \) measurements, the gravity corrected \(\delta^{13}C \) equals the sum of a correction factor (very close to the \(\delta^{15}N-\text{N}_2 \)) and the measured \(\delta^{13}C \) (see Rubino et al., 2013 for details).” and has commented: “how large is this gravity correction typically for the different species? Here you refer to \(\delta^{15}N_2 \) values. Where do they come from? Are these values also stored in the database (they should)? How do you correct iff you do not have \(\delta^{15}N_2 \) values?”

Author’s response: The questions of the referee are all very relevant and we have included a few lines to answer them in the Supplement.

Author’s changes in the Supplement: We have added a few lines at page 4: “The values of \(\delta^{15}N \) are often measured in firn to constrain the firn diffusion model. In case of missing \(\delta^{15}N \) measurements, the firn model is constrained with other measurements and then used to simulate the \(\delta^{15}N \) profile. Our database stores all measured and modelled \(\delta^{15}N \) values for firn sites at Law Dome. The gravity correction is typically 1-1.5 ppm for \(\text{CO}_2 \), 2-6 ppb for \(\text{CH}_4 \), 1-1.4 ppb for \(\text{N}_2\text{O} \) and 0.25-0.3 ‰ for \(\delta^{13}C-\text{CO}_2 \).”

Comment from referee: The referee has highlighted the text: “The diffusion correction (only for measurements of isotopic composition): For measurements of isotopic ratios in firn and ice air samples, a so-called diffusion correction is needed (Trudinger et al., 1997). This correction arises from the fact that an isotope ratio is the ratio of two isotopes with slightly different diffusion coefficients and therefore slightly different effective ages (Trudinger, 2000, section 3.6). For hypothetical species with constant isotopic ratio, but changing atmospheric concentrations, the isotopic ratio in the firn can be significantly different from the atmospheric ratio. For \(\delta^{13}C \), the diffusion correction is proportional to the rate of change of \(\text{CO}_2 \) concentration, which makes the \(\delta^{13}C \) diffusion correction insignificant in the LHPI, and a very significant term in the Industrial Period.” and has commented “how large is this correction typically? How do you do the correction (firn modeling? this needs more detail”

Author’s response: The questions of the referee are all very relevant and we have included a few lines to answer them in the Supplement.

Author’s changes in the Supplement: We have added a few lines at page 4: “The diffusion correction is estimated using the CSIRO firn diffusion model and, at Law Dome, can range from around 0 in the Pre-Industrial to 0.13 ‰ in the Industrial Period.”
We thank Referee #2 to support publication of our paper. In the following, we address the referee’s comments in the order of appearance.

Page 2, line 15-16 (of the manuscript with no track changes revisions)

Comment from referee: I suggest to rephrase “it is extremely difficult to separate the impacts of anthropogenic increases in CO₂ on carbon sinks from the impacts of global warming or increased CO₂ concentration on these sinks.”. This statement was unclear for me.

Author’s response: We have change the statement to make it clear.

Author’s changes in manuscript: We have modified the sentence at page 2 lines 15-17 to: “Additionally, temperature and CO₂ have both increased almost continuously through the 20th century, making it difficult to separate the impacts of CO₂ on carbon sinks from the impacts of temperature increase on these sinks.”

Page 3, line 7 (of the manuscript with no track changes revisions)

Comment from referee: Rhodes et al., 2016 (Climate of the Past) include more CH4 data from Greenland.

Author’s response: We thank the referee for this important comment, which has helped us address an important weakness of our study when comparing the Law Dome CH₄ records with CH₄ records from other sites. As the referee points out, Rhodes et al. (2013) shows the GISP2 CH₄ record as well, published in Mitchell et al. (2013). We have added this record to figure 3c (now 4c) and have cited Mitchell et al. (2013).

Author’s changes in manuscript: We have modified the sentence at page 3 lines 8 adding “… and from GISP2 (Mitchell et al., 2013)...” and have added the GISP2 CH₄ record to figure 3c (now 4c).

Page 5, section 2.1

Comment from referee: use the same unit for all accumulation data, for homogeneity.

Author’s response: We agree with the reviewer that it is better to have all accumulation rates expressed with the same units. We have decided to convert all accumulation rates to kg m⁻² yr⁻¹, which is also consistent with the units used in Figure 1. We have also left the accumulation rate at DE08/DE08-2 as meters of ice equivalent per year in brackets, as it is nice to give a better feel to the non-specialist reader for what the accumulation looks like.

Author’s changes in manuscript: We have expressed all units of accumulation rate at page 5 in kg m⁻² yr⁻¹.

Page 6, line 23 (of the manuscript with no track changes revisions)

Comment from referee: typo “I think”.

Author’s response: fixed
Comment from referee: I understand that the atmospheric mixing between Northern hemisphere and Southern hemisphere is fast enough so [CH4] would exhibit almost simultaneous trend in both hemispheres. Here the shift in in LIA CH4 decrease seems to be about 40 yrs (Fig. 3). Similar shift seems to exist at the onset of the industrial period CH4 increase. Can we explain such shift with Age Scale uncertainty? Maybe discuss this shift by providing more quantitative estimation.

Author’s response: We thank the reviewer for this important comment, which, together with a similar comment of reviewer 1, and has helped us improve this part of the manuscript. We have updated the original NEEM CH4 gas age scale published in Rhodes et al. (2013), with the new NEEM ice age scale published in Sigl et al. (2015) and the revised Δage (gas age-ice age) after Buizert et al. (2014). The different timing is now partially resolved (15 years now, instead of 30 years). Having added the CH4 GISP2 record, we have commented on how the Northern (GISP2) and Southern (WAIS) records have been synchronised by Mitchell et al. (2013) based on the following reasoning: “The multidecadal events observed in both ice core records must have occurred simultaneously since the durations of the events were much larger than the atmospheric mixing time (~1 year).”. As already written above, there are multiple possible reasons, associated with the differences of the sites and/or the sampling resolution of the records, to explain the discrepancy found between Northern (NEEM) vs Southern (Law Dome/WAIS) Hemisphere CH4 records, as discussed in the following:

- **Age scale issues**, as suggested by the referee. Usually, age scale issues are not very significant for the last centuries. Over such a short time scale, the age of the ice is established through annual layer counting. However, there can be significant uncertainty associated with the delta_age (ice age-gas age).

- **Smoothing of the atmospheric signals due to air diffusion in the firn open porosity**. As shown for the Law Dome CO2 record smoothed through the gas age distribution of DML in Figure 2 of Rubino et al. (2016), the smoothing causes a shift in age of the max and min values of the LIA CO2 decrease. For the Law Dome vs DML comparison, the shift amounts to a few years. NEEM has higher accumulation than DML, so firn smoothing should cause an even smaller shift.

- **Inadequate sampling resolution**. The NEEM CH4 records plotted in figure 3 (now figure 4) is a 5 year average of the high resolution record published in Rhodes et al. (2013). The Law Dome CH4 record has a lower sampling resolution (5 datapoint over a 30-year period of decreasing CH4 concentration, so on average 1 datapoint every 6 years). By increasing the sampling resolution, it is possible that the time shift between the NEEM and the Law Dome CH4 event decreases.

A thorough investigation of the cause of the differences in the LIA CH4 event in the Northern (as recorded in NEEM) and the Southern (as recorded in Law Dome/WAIS) Hemisphere is out of the scope of our paper. However, in the future, this discrepancy should be resolved to obtain a precise synchronisation of all ice core records available over the LIA.

Author’s changes in manuscript: We have modified the discussion at page 12 line 18-27: “The age scale of the NEEM CH4 record published in Rhodes et al. (2013) has been revised with the updated ice age scale published in Sigl et al. (2015) and the new estimate of Δage provided by Buizert et al. (Buizert et al., 2014). Mitchell et al. (2013) have synchronised the GISP2 CH4 record with the WAIS CH4 record to investigate changes of the Inter Polar Difference in the Pre-Industrial based on the reasoning that “the multidecadal events observed in both ice core records must have occurred simultaneously since the durations of the events were much larger than the atmospheric mixing time (~1 year)” (Mitchell et al., 2013). The NEEM CH4 record has not been synchronised with the others,
and there are multiple possible reasons, including age scale issues, different smoothing of the atmospheric signals at the different sites and inadequate sampling resolution, to explain the discrepancy found between the NEEM and the GISP2/Law Dome/WAIS CH4 records during the LIA. A thorough investigation is out of the scope of this paper, but, in the future, this discrepancy should be resolved to obtain a precise synchronisation of all ice core records available over the LIA.”

Figures:

Comment from referee: I find the figures difficult to read; I would advise to increase size for labels and titles.

Author’s response: We have chosen the size for labels and titles based on the font size in the template provided for ESDD articles for consistency. We would be happy to increase the size if the editorial office allows us to do so.

Author’s changes in manuscript: We have not changed the size because we need approval from the ESDD editorial office.

Figure 4:

Comment from referee: this figure highlight two important past findings (Rubino et al., 2016; Ferretti et al., 2005). It also includes data that can potentially be relevant for further studies and interpretations. I am not sure these data (b, d, and e) need to be plotted; likely description in the manuscript is enough. If the authors want to keep these data as part of plot 4, I would recommend to clarify the figure, e.g. the panel b and c can be shifted, so the figure reports first ice core data, and second complementary climatic data.

Author’s response: We agree with the reviewer that swapping figures 4b and 4c (now 5b and 5c) makes sense for clarity of presentation, but also under the point of view of citation order.

Author’s changes in manuscript: We have modified figure 4 (now figure 5) by swapping figure 4b and 4c (now 5b and 5c). We have modified the figure caption and the citation to figure 5b and 5c in the text accordingly.

Technical comments related to Supplement:

Comment from referee: My main concern is about the way uncertainties are calculated by multiplying the blank uncertainty with a factor u.f. I find this process complex, not fully understandable for data users, and maybe operator-dependent. To me, the blank uncertainty is independent from other sources of uncertainties (e.g., dispersion of results observed for replicated measurements on of the same sample). Independent uncertainties when propagated do not multiply each others.

Author’s response: We thank the referee for the detailed comments provided on the way we calculate the uncertainty associated with the results we produce. We agree with the referee that the process we have developed is quite complex. Unfortunately, our rule-based selection procedure needs to take into account all the little pieces of information that are normally evaluated by an operator based on the experience matured over 20+ years at ICELAB-GASLAB. Our aim, though, was to develop an automatic system, which would minimise operator-dependent judgements, to make it consistent in time and between different operators. We understand that it is very difficult for an external data user to understand the details of the procedure we have developed. We have tried to make the description of it as clear as possible.
As the referee states, the blank uncertainty is independent from other sources of uncertainties, such as those mentioned by the referee. We have propagated the uncertainty using the guidelines from the Joint Committee for Guides in Metrology (2008). The uncertainty associated with the blank correction dominates over the other sources of uncertainty.

Author’s changes in the Supplement: We have added a citation to the Joint Committee for Guides in Metrology (2008), Evaluation of measurement data—Guide to the expression of uncertainty in measurement, Bur.Int. des Poids et Mesures Pavillon de Breteuil, France, at page 5. We have also added a couple of sentences at page 4: “The uncertainty associated with gravity and the diffusion corrections are negligible compared to the uncertainty associated with the blank correction” and at page 5 “However, the variability associated with replicates of the same sample is negligible compared with the uncertainty associated with the blank correction.” to explain that the blank uncertainty dominates over the other sources of uncertainty.

Comment from referee: We can observe here that for a sample where u.f. = 1 (i.e., qf and mq = fair or good), the data uncertainty is reduced to only the blank uncertainty, ignoring for example that different replicated measurements of the same sample will likely not be exactly all the same.

Author’s response: The referee is right: different replicated measurements of the same sample will not show the same result. However, the variability associated with replicates of the same sample is negligible compared to the uncertainty associated with the blank correction, which quantifies the variability associated with multiple tests run together with the samples. Additionally, because of the way the ICELAB-GASLAB system has been conceived (measurements of different species on the same ice sample), replicates of the same sample measured for the same species are so rare that there is no uncertainty associated with replicates for the vast majority of the samples analysed.

Author’s changes in the Supplement: We have modified a sentence at page 3: “Only a few measurements of concentration have been replicated. For isotopes, there has never been enough air to measure replicates”. We have also modified a sentence at page 4 of the Supplement: “Because of the small size of ice core samples generally available and the need for large air volume to measure multiple species, the vast majority of samples have no replicated measurements.” and another sentence at page 5: “However, the variability associated with replicates of the same sample is negligible compared with the uncertainty associated with the blank correction.”

Comment from referee: The u.f. factor includes many parameters (flags, and criteria associated to weights), and some of them are not related to uncertainty. As an example, the first parameter is “melt layer”. A melt layer can, e.g., results in high methane concentration (due to in situ production), but the measurement uncertainty of such high concentration should not be different from a regular sample. Just higher concentration will be measured. A melt layer sample does not have the quality required for reconstructing past CH4, but its measurement could be of great quality! Overall, I would advise that the authors identify more clearly what causes uncertainties, instead of considering everything.

Author’s response: Our database is in constant development and it is possible that we will find better ways of including factors affecting the total uncertainty in the future. However, for now, when a melt layer is found, a sample is rejected because, as the referee suggests, melt layers are known to alter the concentration of the species we measure.

Author’s changes in the Supplement: We have added a sentence at page 3: “For example, a melt layer is classified as evidence of a fatal problem of sample quality and provides a q.s. = 3 and a q.f. = “reject”.”
Comment from referee: Some of the flags and criteria associated to weights seem subjective, and maybe operator-dependent in their evaluation (at least this is what I feel when reading the Supplement).

Author’s response: The thresholds for flags and weights have been decided based on a “calibration”. The idea was to replicate with an automatic procedure what had been done in the past manually. The aim was to make the procedure consistent over time and as independent from the operator as possible.

Author’s changes in Supplement: We have added a line at page 3: “The flagging and weighting thresholds are tuned by calibrating the rule-based selection on the manual selection used before the database was conceived. The idea was to replicate with an automatic procedure what had been done in the past manually. The aim was to make the procedure consistent over time and as independent from the operator as possible. In summary, the rule-based selection converts qualitative judgments on the robustness of sample preparation, extraction and analysis into quantitative scores in order to consistently select/reject the results and quantify uncertainty.”

Comment from referee: When all criteria reports “reject” (i.e., u.f. = 4), the data is not rejected, but the uncertainty is increased more. It seems to me that these data should be excluded (as suggested by the wording “fatal problem”).

Author’s response: When q.f. = “reject”, the sample is marked with a rejection flag. However, the result of that sample is retained in the database and a u.f. = 4 is associated with it. The reason why we have decided to do that is to give enough flexibility for the operator to overrule the automatic selection, providing a convincing justification that the operator’s choice is appropriate. If a data user wants to use that sample, the uncertainty associated with the results is very high (4 × the blank uncertainty and then propagated as explained).

Author’s changes in the Supplement: We have added a line at page 5: “When q.f. = “reject”, the sample is marked with a rejection flag. However, the result of that sample is retained in the database and a u.f. = 4 is associated with it. The reason why we have decided to do that is to provide enough flexibility for the operator to overrule the automatic selection when there is a strong reason (e.g. new insight developed over time). If a data user wants to use that sample, the uncertainty associated with the results is very high (4 × the blank uncertainty and then propagated as explained below).”

Comment from referee: What are the typical blanks observed, and typical blank uncertainties observed?

Author’s response: This comment, together with a similar comment from referee 1, has helped us provide important information, which was missing from the previous version of the manuscript. We thank the referees for that.

Author’s changes in the Supplement: We have added a line at page 5: “The blank correction can vary significantly depending on the conditions of the extraction line and on how experienced the line operator is. Typical values are within the following ranges: 0.5-1.5 ppm (uncertainty 0.5-2 ppm, 1σ) for CO₂, 3-10 ppb (uncertainty 3-15 ppb, 1σ) for CH₄, 0.5-3 ppb (uncertainty 0.5-4 ppb, 1σ) for N₂O and 0.03-0.1 ‰ (uncertainty 0.04-0.13 ‰, 1σ) for δ¹³C-CO₂.” and a sentence at the end of page 4 of the Supplement: “The uncertainty associated with gravity and the diffusion corrections are negligible compared to the uncertainty associated with the blank correction”

Comment from referee: I am not convinced that CO concentration is a good tool to evaluate the quality of a measurement (similarly to "melt layer", see before), or the quality of a sample. CO can
be produced by chemical processes (the authors mention biological production of CO, citation is missing for that), but to my knowledge no collocated productions of CO and, e.g. CO\textsubscript{2}, CH\textsubscript{4} or N\textsubscript{2}O have been reported so far in ice cores. The processes involved could be different, and a sample compromised for CO can be of good quality for others analyses. Ambient CO is often higher than what is in ice core bubbles, but this is also clear with CH\textsubscript{4}.

Author’s response: High CO is quite a reliable indicator of contamination by the ingress of lab/storage facility air into the sample, or by leaks during processing the sample. High CO has also been reported together with high CO\textsubscript{2} and low δ^{13}C-CO\textsubscript{2} values in a study of Antarctica vs Greenland CO\textsubscript{2} by Francey et al. (1997).

Author’s changes in the Supplement: At page 2, we have cited Francey et al. (1997) showing evidence of in-situ production of CO in Greenland ice. We have modified the associated sentence: “High CO values have been measured in Greenland ice (Francey et al., 1997) together with high CO\textsubscript{2} and low δ^{13}C-CO\textsubscript{2}, suggesting in situ oxidation of organic material deposited on the Greenland icecap (Francey et al., 1997)”.
Revised records of atmospheric trace gases CO₂, CH₄, N₂O and δ¹³C-CO₂ over the last 2000 years from Law Dome, Antarctica

Mauro Rubino¹,², David M. Etheridge², David P. Thornton², Russell Howden², Colin E. Allison², Roger J. Francey², Ray L. Langenfelds², L. Paul Steele², Cathy M. Trudinger², Darren A. Spencer², Mark A. J. Curran³,⁴, Tas D. Van Ommen³,⁴, Andrew M. Smith⁵

¹School of Geography, Geology and the Environment, University of Keele, ST5 5BG, UK
²Climate Science Centre, CSIRO Oceans and Atmosphere, Aspendale, Victoria, 3195, Australia
³Antarctic Climate and Ecosystems Cooperative Research Centre, University of Tasmania, Private Bag 80, Hobart, Tasmania 7005, Australia
⁴Australian Antarctic Division, Channel Highway, Kingston, Tasmania 7050, Australia
⁵Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee, NSW 2232, Australia

Correspondence to: Mauro Rubino (m.rubino@keele.ac.uk)

Abstract. Ice core records of the major atmospheric greenhouse gases (CO₂, CH₄, N₂O) and their isotopologues covering recent centuries provide evidence of biogeochemical variations during the Late-Holocene and Pre-Industrial Periods and over the transition to the Industrial Period. These records come from a number of ice core and firn air sites, and have been measured in several laboratories around the world and show common features, but also unresolved differences. Here we present revised records, including new measurements, performed at the CSIRO Ice Core Extraction LABoratory (ICELAB) on air samples from ice obtained at the high accumulation site of Law Dome (East Antarctica). We are motivated by the increasing use of the records by the scientific community and by recent data-handling developments at CSIRO-ICELAB. A number of cores and firn air samples have been collected at Law Dome to provide high-resolution records overlapping recent, direct atmospheric observations. The records have been updated through a dynamic link to the calibration scales used in the Global Atmospheric Sampling LABoratory (GASLAB) at CSIRO, which are periodically revised with information from the latest calibration experiments. The gas-age scales have been revised based on new ice-age scales, and the information derived from a new version of the CSIRO firn diffusion model. Additionally, the records have been revised with new, rule-based selection criteria and updated corrections for biases associated with the extraction procedure, and the effects of gravity and diffusion in the firn. All measurements carried out in ICELAB-GASLAB over the last 25 years are now managed through a database (the ICElab dataBASE or ICEBASE) which provides consistent data management, automatic corrections and selection of measurements, and a web-based user interface for data extraction. We present the new records, discuss their strengths and limitations and summarise their main features. The records reveal changes in the carbon cycle and atmospheric chemistry over the last two millennia, including the major changes of the anthropogenic era and the smaller,
mainly natural variations beforehand. They provide the historical data to calibrate and test the next inter-comparison of models used to predict future climate change (Coupled Model Inter-comparison Project - phase 6, CMIP6). The datasets described in this paper, including spline fits, are available at https://doi.org/10.25919/5bfe29ff807fb (Rubino et al., 2018).

1 Introduction

The three well-mixed (long-lived) atmospheric greenhouse gases (GHGs, including halocarbons) that contribute the most to current global warming are CO₂, CH₄ and N₂O. Their concentrations have been increasing since the beginning of the Industrial Period, causing most of the current ~1 °C temperature increase above the average global temperature in the period 1861-1880 (Stocker et al., 2013). The temperature increase limit of 2 °C set by the Paris Agreement for 2100 requires substantial reduction of GHG emissions in the next decades, and, consequently, significant reductions in the rates of GHG concentration increases. Predicting how GHG concentrations will vary in the future requires a clear understanding of the biogeochemical processes responsible for their variations. However, models of future long-term climate changes predict a large range in GHG concentrations for a given scenario of emissions (Friedlingstein et al., 2014), and one of the key uncertainties is associated with feedbacks in the coupled carbon-climate system (Arora et al., 2013). Climate modellers have analysed and compared results from state-of-the-art climate model simulations to gain insights into the processes of climate variability, change and feedbacks through the Coupled Model Inter-comparison Project (CMIP). In CMIP, records of GHGs can be used either as forcing or as a diagnostic (Graven et al., 2017; Meinshausen et al., 2017). However, real-time records of GHGs started in a period when anthropogenic forcing was already very significant, and the atmosphere and the Earth system were in strong disequilibrium, and therefore do not provide a balanced state for model spin-up. Additionally, temperature and CO₂ have both increased almost continuously through the 20th century, making it difficult to separate the impacts of CO₂ on carbon sinks from the impacts of temperature increase on these sinks. Also, it is extremely difficult to separate the impacts of anthropogenic increases in CO₂ on carbon sinks from the impacts of global warming or increased CO₂ concentration on these sinks. Furthermore, real-time records are often too short to draw strong conclusions on multi-decadal variability. To provide a balanced system for model spin-up, and evaluate the ability of models to capture observed variability on multi-decadal and longer time-scales, a branch of CMIP (‘Historical Simulations’) starts in 1850 (Eyring et al., 2016), while another branch (the ‘Paleoclimate Modelling Intercomparison Project’, PMIP) focuses on paleo-climate simulations (Schmidt et al., 2014). Yet, policymakers need short-term predictions of global warming (next decades to century), and the Intergovernmental Panel on Climate Change has very recently provided a special report on the impacts of global warming of 1.5 °C above Pre-Industrial levels. The last millennium is a very suitable period to support these types of investigations since the Earth system was much closer to its current state than e.g. previous periods of glacial-interglacial transition.
Ice cores are exceptional archives of factors influencing past climate change because they contain a large range of substances, including water (H\textsubscript{2}O) in the ice itself, as well as ionic species, organic molecules and atmospheric gases sealed in bubbles (Barbante et al., 2010). They can span from polar (Antarctica and Greenland mostly) to tropical (high altitude) sites (Thompson et al., 2013), and extend several hundred thousands of years back in time (Higgins et al., 2015; Wolff et al., 2010). Ice cores from different locations have different accumulation rates and temperatures, which translate into differences in time resolution, the age of the deepest layers and archival suitability. Focusing on the last millennium, multiple ice core records of GHG concentration and isotopic composition are available:

- \textsubscript{13}CO\textsubscript{2} from EDML (EPICA Dronning Maud Land, Antarctica) and South Pole (Siegenthaler et al., 2005), Law Dome, East Antarctica (Etheridge et al., 1996; MacFarling Meure et al., 2006; Rubino et al., 2013), DML (Dronning Maud Land, Rubino et al., 2016) and WAIS (West Antarctic Ice Sheet, Ahn et al., 2012);
- \textsubscript{18}C-CO\textsubscript{2} from Law Dome (Francey et al., 1999; Rubino et al., 2013), WAIS (Bauska et al., 2015) and DML (Rubino et al., 2016);
- CH\textsubscript{4} from NEEM (Rhodes et al., 2013) and GISP\textsubscript{2} (Mitchell et al., 2013) in Greenland, Law Dome (Etheridge et al., 1998; MacFarling Meure et al., 2006) and WAIS (Mitchell et al., 2011) in Antarctica;
- \textsubscript{15}N\textsubscript{2}O from EUROCORE and GRIP in Greenland (Flückiger et al., 1999), Dome C (Flückiger et al., 2002), and Law Dome (MacFarling Meure et al., 2006) in Antarctica.

There are other records focusing on periods other than the last centuries, but also covering the whole or part of the Industrial and the Pre-Industrial Periods (i.e. for \textsubscript{15}N\textsubscript{2}O: H\textsubscript{15} by Machida et al., 1995; Styx glacier by Ryu et al., 2018; Talos Dome by Schilt et al., 2010). We have decided not to include them in our comparison because their temporal resolution (Schilt et al., 2010) and/or coverage (Machida et al., 1995; Ryu et al., 2018) limits their value for comparison with the records focusing on the last centuries.

There are real differences between records of the same GHG from different sites caused by atmospheric features, such as the inter-hemispheric gradient (North-South or Greenland vs Antarctica). The inter-hemispheric gradient is different from one GHG to another, depending on the balance between, and the distribution of, sources and sinks for that specific GHG in the two hemispheres, as well as on the atmospheric circulation and the atmospheric lifetimes of the gases. There are also differences which do not reflect atmospheric changes, due, for example, to the characteristics of the sites where the ice is sampled. Ice core site characteristics influence the measured gas records due to the gaseous diffusion through the upper-most layers of porous, compacting snow, the ‘firn’ (Schwander et al., 1993). Together, diffusion in firn and gradual bubble close-off result in a smoothed representation of the atmospheric history in ice core gas records. The smoothing process depends on the depth of the firn layer and on how quickly bubbles close off and trap air during firn to ice transition. Ice cores sites in Greenland generally have higher accumulation rates and temperatures than in Antarctica. Consequently, GHG records from many Antarctic sites are usually a more smoothed representation of the atmospheric history.
Unfortunately, there is no reliable CO₂ record available from Greenland because there is evidence of in-situ production of CO₂ (Anklin et al., 1995; Barnola et al., 1995). The most likely explanation for this is high levels of impurities in Greenland ice reacting with acidity and/or hydrogen peroxide (Jenk et al., 2012; Tschumi and Stauffer, 2000). Law Dome, Antarctica, provides the best time-resolved ice core records due to the very high accumulation rate at this site (Etheridge et al., 1996; Goodwin, 1990), even more so than Greenland. Also, records from multiple Law Dome sites show no evidence of in-situ production because they agree with records from colder sites in Antarctica (Rubino et al., 2016; Siegenthaler et al., 2005), and compare closely with each other, with air extracted from the firn, and with modern atmospheric records (Rubino et al., 2013).

However, there are unexplained differences between records of the same GHG, particularly for CO₂. For example, while the CO₂ records of South Pole and EDML over the last centuries are consistent with Law Dome when their broader age smoothing is taken into account (Rubino et al., 2016; Siegenthaler et al., 2005), the WAIS CO₂ record is on average 3 ppm higher than the Law Dome CO₂ record (Ahn et al., 2012). The similarity between the high frequency variations of the CH₄ records from Law Dome and WAIS (Mitchell et al., 2011) suggests that the two sites (Law Dome and WAIS) introduce similar smoothing of the atmospheric signals. However, the Law Dome CO₂ minimum measured around 1610 AD does not have a corresponding feature at WAIS (Ahn et al., 2012). Considering that a comparison between the two laboratories where Law Dome and WAIS samples were measured has shown no significant offset (Ahn et al., 2012), the differences between the WAIS and the Law Dome CO₂ records could be explained by a small effect of in-situ production at WAIS. Additionally, there is a significant difference in the mean Pre-Industrial level of δ¹³C-CO₂ measured at WAIS and Law Dome (Bauska et al., 2015; Rubino et al., 2016). These differences need to be resolved with inter-calibration campaigns between different laboratories, using ice cores from different sites (including new high accumulation cores) and accurate modelling of gas-age (both the mean value and spread) at each site.

To provide the most consistent datasets possible for the past centuries, we have previously compared the Law Dome records of CO₂, CH₄, N₂O and δ¹³C-CO₂ to firm and modern atmospheric measurements (MacFarling Meure et al., 2006; Rubino et al., 2013). The consistency between these measurements is evidence of our ability to extend current atmospheric records back in time using ice and firn. However, because of the emissions during the Industrial Revolution, our measurements of modern and old (Pre-Industrial) air samples lie in different concentration ranges and the calibrations used for measurements of modern air samples are, therefore, in a concentration range rather different from that used for measurements of old air samples. The measurements performed in ICELAB-GASLAB at CSIRO have the advantage of being calibrated across the range of concentrations of old and modern air sample measurements. Also, ice core gas extractions and analyses are technically challenging, and different people at CSIRO-ICELAB have produced those measurements over almost three decades. Thus, it is possible that the extraction/analysis procedures have introduced different biases over time, influencing the measurements by variable amounts. However, except for minor developments over time (Etheridge et al., 1996; Francey

et al., 1999; MacFarling Meure et al., 2006; Rubino et al., 2013, 2016) the equipment used for extraction and analysis has not fundamentally changed. In this study, we describe the procedure recently developed at CSIRO ICELAB-GASLAB to automatically perform calibration scale updates and data selection and correction automatically and in a consistent way for all measurements made over the last 25 years. In the Supplement, we provide a detailed explanation of the database recently created to store, process and extract the information about the samples analysed, the measurements performed and the results obtained. We present updated records of CO₂, CH₄, N₂O and δ¹³C-CO₂ measured in ice and firn air from Law Dome (Rubino et al., 2018). After merging them with other relevant records, they will be used to run models participating at CMIP6 (Graven et al., 2017; Meinshausen et al., 2017). We discuss the strengths and limitations of the Law Dome GHG records and compare our records with other records from different sites to show similarities and unresolved discrepancies. Finally, we discuss the main features of those records, their implications for biogeochemical, atmospheric and climatic studies, and possible future lines of research.

2 Methods

2.1 Law Dome

The ice cores used in this study, referred to as DE08, DE08-2, DSS and DSS0506, were drilled at Law Dome, East Antarctica (Fig. 1). Law Dome is a relatively small (~150 km diameter and 1390 m high) ice sheet on the coast of Wilkes Land. It receives large and regular snowfall mainly from the east, and the surface rarely melts in the colder central regions. The ice flow is mainly independent of the flow of the main East Antarctic ice sheet because of the drainage around Law Dome by two glacier systems (the Totten and the Vanderford). Re-working of the accumulated snow is minimal, insufficient to erase annual layers as high wind speeds are relatively infrequent and the snow surface is smooth. The resulting annual layering is thick and regular and preserved for much of the ice thickness (van Ommen et al., 2005).

DE08 and DE08-2 were drilled in 1987 and 1993, respectively, only 300 m apart and 16 km east of the summit of Law Dome (66°44’S, 112°50’E, 1390 m above mean annual sea level), and have an accumulation rate of approximately 1100 kg m⁻² yr⁻¹ (equivalent to 1.4 m of ice equivalent per year). DSS (Dome Summit South) was drilled between 1988 and 1993, 4.6 km south-south west of the summit, and has an accumulation rate of about 600 kg m⁻² yr⁻¹,0.7 m ice equivalent per year (Etheridge et al., 1996; Goodwin, 1990; van Ommen et al., 2005). In January-February 1993, air was sampled from the firn layer at DE08-2, providing air with mean ages back to 1976 A.D. (Etheridge et al., 1996). Another firn campaign was carried out at DSSW20K (accumulation rate of approximately 150 kg m⁻² yr⁻¹,0.17 m ice equivalent per year), 20 km west of DSS in December 1997 (Sturrock et al., 2002), which provided air dating back to about 1940 A.D. (Trudinger et al., 2002b). DSS0506 was thermally drilled in a dry hole (Burn-Nunes et al., 2011) during the 2005/2006 austral summer near the Law Dome.
Dome summit (66°46'S, 112°48'E, 1370 masl). The site has a high snow accumulation rate (of about 600 kg m\(^{-2}\) yr\(^{-1}\)) and a mean annual temperature of -22 °C.

2.2 ICELAB extraction

Measurement of the composition of air in ice core bubbles requires an extraction step to release the air from ice. The dry extraction technique used at ICELAB has been described in detail in previous publications (Etheridge et al., 1996; MacFarling Meure et al., 2006), with recent minor alterations to optimise extraction and measurement of \(\delta^{13}\)C-CO\(_2\) analyses (Rubino et al., 2013). Briefly, after ice sample selection and preparation (removing the outer 5–20 mm with a band saw), typically 0.7–1.3 kg of ice is placed in a polyethylene bag (Layflat, USP\(^\circ\)) and cooled down to -80 °C in a chest freezer for at least 24 h prior to extraction. The ice is then placed inside a perforated inner cylinder ('cheese grater') fixed inside an internally electropolished stainless steel container which is then evacuated to less than 10\(^{-4}\) Torr and maintained at that pressure for at least 25 min. The ice is then grated by mechanically shaking the container for 10 minutes, which releases the trapped air. The process yields on average 70 mL (range 50–90 mL) of air, estimated from the pressure in the extraction line (whose volume has been previously calibrated). The air is passed through a water vapour trap (~100 °C) and then cryogenically collected in an electropolished and preconditioned stainless steel trap at around 20 K (-250–253 °C). The sample trap is warmed in a water bath at room temperature (~25 °C) for 5 min to vaporise and mix the gases before being transported into the instrument laboratory. Samples are analysed on gas chromatographs (GCs) for CO\(_2\), CH\(_4\), CO, H\(_2\), and N\(_2\)O within 24 h after extraction, and on the isotope ratio mass spectrometer (IRMS) for \(\delta^{13}\)C and \(\delta^{18}\)O within 12 h.

To estimate the uncertainty associated with and any possible bias introduced by the extraction procedure (called the blank correction), test samples are run together with the real ice samples. The test samples can either be reference air samples of known composition processed with no ice present (named 'blanks'), or reference air samples injected over ice grown with no visible bubbles in it and grated as for an actual ice core sample (the so called bubble free ice, or BFI). BFI is grown in ICELAB by keeping a container filled with deionized water in thermal equilibrium, in order to grow ice as slowly as possible from the bottom to the top of the container. The container features Plexiglass sidewalls that are electrically heated. The water exchanges heat only through the metallic base and freezes from the bottom to the top. If the process is slow enough, the produced ice is free of visible bubbles. The results of the tests performed on ICELAB-BFI, as well as on other, externally grown BFI, have been extensively described by Rubino et al. (2013).

2.3 GASLAB analysis

Each extracted air sample is analysed for trace gas concentrations (defined as mole fractions in parts per million (ppm) or parts per billion (ppb) in dry air) using several GCs in GASLAB. A Series 400 CARLE/EG&G (Tulsa, Oklahoma, USA) GC equipped with flame ionization detector is used to measure CH\(_4\) and CO\(_2\) (the latter converted, after column separation, to...
CH₄ using a nickel catalyst at 400 °C. A Trace Analytical RGA3 (Menlo Park, California, USA) GC, equipped with a mercuric oxide reduction gas detector, is used to measure CO and H₂, which reduces HgO to gaseous Hg for detection by UV absorption. N₂O is measured on a Shimadzu GC-8AIE (Kyoto, Japan) equipped with an electron capture detector. In normal GASLAB operation, air samples (including those sampled from firn) in low-pressure flasks and high-pressure cylinders are injected and analysed on the GCs using automated inlet systems to ensure reproducibility and minimum sample consumption (Francey et al., 2003). Because of the limited amount of air available, a semi-automated procedure is used to inject the small volume of ice core air into the GCs inlet systems. Approximately 15-20 mL are used to measure CO₂, CH₄, CO and H₂, and 12-15 mL are used to measure N₂O. The remaining air (typically 40 mL) is used for δ¹³C and δ¹⁸O measurements. The volumes indicated are total volume used for flushing gas transfer lines as well as for analysis.

The δ¹³C and δ¹⁸O of the CO₂ in the residual air are measured using the MAT252 (Finnigan MAT GmbH, Bremen) IRMS located in GASLAB. Low pressure, large volume whole air samples from flasks (atmospheric or firn air samples) and the small volume, high pressure, whole air samples from ICELAB are introduced into the IRMS through a common inlet (multiport) equipped with an all stainless steel mass flow controller (Brooks 5950) to ensure constant mass flow conditions for all samples. The IRMS uses two cryogenic traps (MT Box C, Finnigan) to retain water vapour and other condensable gases and to extract CO₂ (plus N₂O) from air. The residual CO₂ (and N₂O) is injected into the MAT252 ion source via a dedicated micro-volume and crimped capillary. Nitrous oxide (N₂O) has identical molecular masses to CO₂ and interferes with the isotopic analyses. To remove this interference, a correction is made to the IRMS output in GASLAB using the relative ionisation efficiency of N₂O and CO₂, the isotopic composition of N₂O and the measured N₂O and CO₂ concentration, as described in detail by Allison and Francey (2007). High precision isotopic ratios are determined by alternating sample CO₂ and reference CO₂ injected via matched crimped capillaries. The carbon isotopic ratio of the sample (sa) is expressed relative to the reference (ref) following Eq. (1):

\[
\delta^{13}C = \left[\frac{(\delta^{13}C/\delta^{12}C)_{sa}}{(\delta^{13}C/\delta^{12}C)_{ref}} - 1 \right] \times 1000
\]

(1).

When comparing measurements performed more than 20 years apart, rigorous traceability in the propagation of calibration scales becomes an important factor. This is obtained with a long-term, continuous comparison of standard cylinders for both GC (Francey et al., 2003) and IRMS (Allison and Francey, 2007) analyses. The current calibration scales used are WMO X2004A for CH₄, WMO X2007 for CO₂, NOAA 2006A for N₂O and CSIRO2005 for CO₂ isotopes (CO₂-in-air scale, which is linked to the VPDB-CO₂ scale).

2.4 ICELAB database

A new database allows storage, selection, correction, updating and extraction of the data produced in ICELAB-GASLAB. It allows results to be dynamically updated if changes in analytical methods or calibration scales are implemented, keeping ice,
firn and atmospheric measurements consistent with each other. Data are stored in tables where the information associated with each specific sample is linked via a Universal Analysis Number (UAN) that acts as the index for combining all information. The structure of the database and its tables are described in detail in the Supplement. The database includes procedures, which automatically perform sample selection, correct results and estimate uncertainty, and provide a routine for data extraction (see Supplement for details).

3 Results and discussions

3.1 Development of the Law Dome GHG records, internal consistency, unexplained discrepancies and limitations

The first Pre-Industrial record of CO₂ from Law Dome covering the whole last millennium was published by Etheridge et al. (1996, reported here with red squares in Fig. 2a and 3a). It was one of the first ice core records to show the overlap with firn (Fig. 2a3a) and contemporary atmospheric measurements. The overlap of ice core and contemporary atmospheric measurements is one of the main advantages of the Law Dome ice core sites, due to their high snow accumulation rates and the resultant relatively quick bubble close-off time and recently enclosed air. This feature has been described extensively in previous papers (Etheridge et al., 1996; MacFarling Meure et al., 2006; Rubino et al., 2013) and used, together with the overlap between different cores, to demonstrate our confidence in extending contemporary GHG concentration measurements back in time. Based on replicate analyses of test samples (blanks and BFI) over time periods of several months, on ice samples within an annual layer, and the overlap mentioned above, Etheridge et al. (1996) estimated that the uncertainty of the CO₂ measurements was 1.2 ppm (1σ). The major biogeochemical events discussed in Etheridge et al. (1996) were the LIA (Little Ice Age) CO₂ decline between 1550 and 1750 AD-CE with the subsequent recovery from the LIA perturbation between 1750 and 1800 AD-CE in the Pre-Industrial Period, and the 1940s stabilisation of atmospheric CO₂ concentration (Fig. 3a) which ended just before the Mauna Loa and South Pole atmospheric records began.

A few years later, the same authors published the Law Dome Pre-Industrial record of CH₄ covering the last millennium (Etheridge et al., 1998, red squares in Fig. 2b and 3b) covering the last millennium. The tight overlap for the first time between ice, firn and contemporary atmospheric CH₄ measurements that began more than 20 years later than for CO₂, confirmed that the ice core air record is a faithful representation of the past atmospheric CH₄ concentration (Fig. 2b3b). The estimated uncertainty was 5 ppb. The major features discussed in Etheridge et al. (1998) were the LIA CH₄ decline, supporting a terrestrial origin for the synchronous CH₄/CO₂ decrease, and the rapid increase in CH₄ growth rates after 1945 AD-CE which peaked in 1981 AD-CE, just as atmospheric monitoring began. It was also possible to determine the Pre-Industrial inter-hemispheric difference in CH₄ (24-58 ± 10 ppb), based on comparison with CH₄ measurements from Greenland (Eurocore and GISP2), also made in ICELAB/GASLAB, and supporting evidence from Blunier et al. (1993) and Chappellaz et al. (1997). The variability over time of the CH₄ Pre-Industrial inter-hemispheric gradient provides a constraint
to quantify variations of sources and sinks of CH₄ (Mitchell et al., 2013). The same is not possible for CO₂ because of the above-mentioned in-situ production in Greenland ice.

To quantify variations of the sources and sinks of CO₂, Francey et al. (1999) measured its isotopic ratio (δ¹³C, red squares in Fig. 4e2e and 3c) in Law Dome ice. This record provided a means to quantify the relative CO₂ uptake from ofby the land and the ocean to the total atmospheric CO₂ change (Trudinger et al., 2002a), when the emissions from fossil fuel and land use change were taken into account for the Industrial Period, and assuming that, in the Pre-Industrial Period, there was no significant influence of anthropogenic activities on the atmospheric δ¹³C-CO₂ (Pongratz and Caldeira, 2012; Stocker et al., 2011), and also assuming no significant changes in inter-hemispheric CO₂ exchange times (Francey and Frederiksen, 2016; Frederiksen and Francey, 2018). The δ¹³C-CO₂ decrease measured by Francey et al. (1999) in the last two centuries (Fig. 2e3c) is mainly due to ¹³C-depleted CO₂ derived from fossil fuel CO₂ emissions, and is important evidence of the prominent role of anthropogenic emissions on the Industrial Period CO₂ increase. Francey et al. (1999) also discussed the increase of δ¹³C-CO₂ during the LIA, supporting the interpretation of a terrestrial origin for the synchronous CH₄/C0₂ decrease (Trudinger et al., 1999), though with lower sampling resolution compared to the CO₂ in Etheridge et al. (1996). Francey et al. (1999) estimated statistical and systematic δ¹³C-CO₂ biases between 0.025 and 0.07 ‰, and uncertainties of up to ±0.05 ‰, but found an unexplained discrepancy of up to 0.2 ‰ (Trudinger, 2000, section 3.8) around 1900 AD CE from the South Pole δ¹³C-CO₂ firn record measured at NOAA-INSTAAR (National Oceanic and Atmospheric Administration-Institute of Arctic and Alpine Research, Boulder, Colorado).

The early Law Dome GHG records have been revised and extended over time as follows.

- MacFarling-Meure et al. (2006) extended the CO₂ and CH₄ records back through the last two millennia (green diamonds in Fig.s 1a-2a and b), and increased sample density in the Industrial Period (green diamonds in Fig.s 2a-3a and b). They also confirmed the LIA CO₂/CH₄ decrease as well as the 1940s CO₂ stabilisation, and produced a record of N₂O (green diamonds in Fig. 4d2d) which, in turn, overlaps with firn N₂O measurements (green diamonds in Fig. 2d3d). The authors interpreted the N₂O decrease of about 5 ppb during the LIA as additional evidence for the terrestrial origin of the LIA GHG decrease. The measurement uncertainty remained the same for CO₂ (1.2 ppm) as for Etheridge et al. (1996), but decreased slightly for CH₄ (from 5 ppb in Etheridge et al., 1998; to 4 ppb in MacFarling Meure et al., 2006). The uncertainty of the N₂O measurements was 6.5 ppb. The authors also found an increase of N₂O concentration of about 10 ppb between 675 and 800 AD CE, which does not seem to be related to any known climatic feature event.

- Rubino et al. (2013) revised the δ¹³C-CO₂ record (see yellow triangles in Fig.s 4e2e and 3c) by updating the calibration scale and revisiting the corrections applied in Francey et al. (1999) for blank, gravity and diffusion effects, using the revised CSIRO firn model (Trudinger et al., 2013) for the gravity and diffusion corrections (Trudinger et al., 1997). In doing so, they resolved the 0.2 ‰ discrepancy found between the Law Dome δ¹³C-CO₂ record and the South Pole δ¹³C-CO₂ firn record (the South Pole firn records have been reported in Fig 5, but see Rubino et al., 2013, for more details). They also increased
sample density during the Industrial Period and applied the new chronology available for Law Dome ice (Plummer et al., 2012), which caused a shift of about 150 years for samples that are 2000 years old (see difference between the ages of green diamonds and yellow triangles in Fig. 4a2a). The age difference becomes negligible in the last millennium, as evident by comparing red squares and yellow triangles in Fig. 4e2c.

- Rubino et al. (2016) carried out additional CO₂ and δ¹³C-CO₂ measurements (see blue circles in Figs 2a-2-3 a and c) from ice cores sampled at the Law Dome site of DSS0506 (Pedro et al., 2011). The data extended back to 1700 AD-CE effective air age and provided additional evidence of consistent results between different ice cores and firn records where they overlapped. However, the increasing CO₂ trend measured in DSS0506 between 1700 and 1850 AD-CE does not tightly match that previously attributed to recovery from the LIA (Etheridge et al., 1996).

It is also worth mentioning the results of two other studies performed using Law Dome ice and firn, which were sampled but not measured using CSIRO-GASLAB instruments.

- To investigate changes in Pre-Industrial sources of CH₄, Ferretti et al. (2005) produced a record of δ¹³C-CH₄ in Law Dome ice covering the last 2000 years (not shown). They reported unexpected changes of the global CH₄ budget, mainly attributed to variations of biomass burning emissions during the Late Pre-Industrial Holocene (LPIH) through an atmospheric box model (Lassey et al., 2000). The δ¹³C-CH₄ record from Ferretti et al. (2005) has not been included in ICEBASE because the air samples extracted in ICELAB were measured on a mass spectrometer not maintained by CSIRO-GASLAB. Therefore, the δ¹³C-CH₄ data are not on a CSIRO calibration scale and have not been included in ICEBASE.

- Park et al. (2012) measured oxygen and intramolecular nitrogen isotopic compositions of N₂O (not shown) covering 1940 to 2005 in Law Dome firn air and archived air samples from Cape Grim (Tasmania). In doing so, they confirmed that the rise in atmospheric N₂O levels is largely the result of an increased reliance on nitrogen-based fertilizers. These isotopic measurements are also not included in ICEBASE.

3.2 The new Law Dome GHG records and comparison with records from other sites.

Figures 3-4-5 shows the newly revised Law Dome GHG records (red circles). Following the rule-based selection described in the Supplementary Material, there are 299 ice core measurements for CO₂, 307 for CH₄ and 147 for N₂O (compared to 212, 228 and 103 respectively in MacFarling Meure et al., 2006), and 86 for δ¹³C-CO₂ (compared to 58 in Francey et al., 1999; and 69 in Rubino et al., 2013). All of the major features described in previous publications are retained. However, the differences mentioned above can potentially influence the biogeochemical and climatic interpretation of these records. Given that the Law Dome GHG records are a major source of information for models used to predict the future behaviour of the Earth System (Graven et al., 2017; Köhler et al., 2017b; Meinshausen et al., 2017), in the following paragraphs we provide an explanation of the main reasons for these differences.

- Changes to the calibration scale result in small, mostly negligible, differences.
- All records (except the δ¹³C-CO₂) start in 154 AD_CE (effective age for CO₂) rather than 0 AD_CE. This causes a revision of air ages towards more recent times for all events recorded in the second last millennium (e.g. the 10 ppb increase of N₂O between 675 and 800 AD_CE discussed in MacFarling-Meure et al. (2006) is now dated 701-822 AD_CE, Fig. 3d4d), but less than 2 year change in dating after about 1000 AD_CE.

- Each data point has an uncertainty, which is independently calculated based on the weighting and flagging systems described in the Supplementary Material. The uncertainty does not include any additional uncertainty associated with inter-core variability. For example, based on comparisons between samples of the same ages, the discrepancy found between DSS0506 and other Law Dome cores in the period 1700-1850 AD_CE suggests that the inter-core variability can potentially add a random, extra-uncertainty of up to 5 ppm. Further research is needed to precisely quantify the inter-core variability.

Comparison with records from other cores show general agreement, but also a number of unexplained discrepancies. The following list compares the new Law Dome records with records from other sites and discusses the main differences:

- There is good agreement between the revised CO₂/δ¹³C-CO₂ Law Dome records and the CO₂/δ¹³C-CO₂ records from DML produced in ICELAB-GASLAB (blue triangles in Fig. 2a-4.5 a and b). Once the different gas age distributions of the ice cores are taken into account, the two records are in very good agreement, with difference of less than 2 ppm for CO₂, and differences within error bars for δ¹³C-CO₂ (Rubino et al., 2016). Given that both records have been produced at CSIRO-ICELAB/GASLAB, we can exclude any possible inter-laboratory offset.

- There is also acceptable agreement (random differences up to 4 ppm) between the CO₂ Law Dome record and the CO₂ records from EDML and South Pole (Siegenthaler et al., 2005, white and green squares in Fig. 4b). Considering that the records have been produced in different laboratories (CSIRO-ICELAB/GASLAB and University of Bern), it is possible that part of the difference is explained by an inter-laboratory offset.

- There is a systematic difference (3 ppm on average) between the Law Dome CO₂ record and the WAIS CO₂ record in the Pre-Industrial (Ahn et al., 2012, see gray squares in Fig. 4b). Though small, the difference is of concern because it is systematic throughout the whole record. The two laboratories (CSIRO-ICELAB/GASLAB and Oregon State University) that produced these records have also run a comparison experiment to quantify the contribution of a possible inter-laboratory offset to the total discrepancy (Ahn et al., 2012). The good agreement (measurements from the two laboratories were consistent within the 1σ analytical uncertainty) found by the inter-comparison experiment suggests that the discrepancy is mostly due to an inter-core difference.

- There is an increase in this difference to >8 ppm between the Law Dome CO₂ dip around 1610 AD_CE and the WAIS CO₂ decrease during the LIA (Ahn et al., 2012, compare gray squares and red circles in Fig. 4b). WAIS is considered a high accumulation site and should retain the same events as those recorded at Law Dome. The difference is even more surprising when the tight agreement between the Law Dome CH₄ record and the WAIS CH₄ record (Mitchell et al., 2011) around this time is considered (compare red circles and grey squares in Fig. 3e4c). The consistency between the Law Dome and the
WAIS CH$_4$ record rules out dating issues or large differences in smoothing of the atmospheric signals between the two sites. This suggests a chemical origin (in-situ production) of the CO$_2$ discrepancy, which is more likely to occur for CO$_2$ than for CH$_4$. Clearly, the two sites record the same CH$_4$ events, but not the same CO$_2$ events, which suggests a small in-situ production of CO$_2$ in WAIS ice. This interpretation is supported by additional evidence of 6 ppm discrepancy (Köhler et al., 2017b) during the Last Glacial Maximum, Last Termination and Early Holocene between the EDC CO$_2$ record (Monnin et al., 2001, 2004) and the WAIS CO$_2$ record (Marcott et al., 2014).

- There is a difference of up to 0.15 ‰ (compare gray squares and red circles in Fig. 4a) between the Law Dome δ13C-CO$_2$ record (Rubino et al., 2013) and the WAIS δ13C-CO$_2$ record (Bauska et al., 2015). This difference is most likely due to an inter-laboratory offset, but may also indicate a contribution from the CO$_2$ discrepancy on to its δ13C, or by a combination of the two. It is not possible to quantify the inter-laboratory offset without running an inter-comparison study. However, it is possible to calculate a maximum effect of the in-situ CO$_2$ production on the δ13C measured at WAIS, assuming that the 3 ppm extra-CO$_2$ measured in WAIS (compared to an average Pre-Industrial CO$_2$ concentration of 280 ppm measured at Law Dome) is totally due to the in-situ production, and that it all comes from carbonate-carbon (δ13C = 0‰), because organic-carbon with δ13C = -27 ‰, would make the WAIS δ13C-CO$_2$ at WAIS more negative than the Law Dome δ13C-CO$_2$. Under this assumption, we calculate a possible shift of 0.07 ‰ through an isotope mass balance (=0-(−6.55))*3/283). This is enough to explain only part of the discrepancy, but can go up to 0.14 ‰ if an extra amount of 6 ppm is assumed (Ahn et al., 2012; Köhler et al., 2017b). The Bauska et al. (2015) record agrees within uncertainties with the Francey et al. (1999) dataset. However, Rubino et al. (2013) is the only record to show consistency with all firn records and direct atmospheric measurements (see Fig.s 3c and 5a). This would suggest that the Rubino et al. (2013) is currently the most accurate record and should be used to set a pre-industrial baseline. However, no definite conclusion can be drawn until a thorough intercomparison study is carried out between the labs that have produced the WAIS and the Law Dome δ13C-CO$_2$ datasets (Oregon State University-University of Colorado-Institute of Arctic and Alpine Research, INSTAAR and CSIRO).

It is important to resolve the difference between the Law Dome and the WAIS δ13C-CO$_2$ records in order to establish a Pre-Industrial baseline and, thus, a Pre-Industrial-to-Industrial δ13C-CO$_2$ difference, as well as a Pre-Industrial to Last Glacial Maximum δ13C-CO$_2$ difference. Setting a Pre-Industrial baseline could have consequences on the Last Glacial Maximum-to-Pre-Industrial δ13C-CO$_2$ difference as well (Schmitt et al., 2012). These values are useful for biogeochemical interpretation (Broecker and McGee, 2013; Krakauer et al., 2006).

- As expected, the Law Dome/WAIS CH$_4$ concentrations are lower than the NEEM high resolution CH$_4$ record (Rhodes et al., 2013, the white squares in Fig. 4c show the median CH$_4$ concentrations for 5 year time slices, after data outliers have been removed) by an amount which is consistent with an inter-hemispheric CH$_4$ difference of 40-60 ppb (Mitchell et al., 2013). Interestingly, the LIA CH$_4$ decrease measured at NEEM appears to start before the CH$_4$ decrease measured at Law
Dome/WAIS, suggesting that the LIA event had an effect on the Northern Hemisphere \(\text{CH}_4\) concentration first, and then propagated to the Southern Hemisphere. Given that the global distribution of the terrestrial biosphere is skewed towards the Northern Hemisphere, this may be further evidence that the LIA atmospheric GHG decrease was caused mostly by land sequestration. The age scale of the NEEM \(\text{CH}_4\) record published in Rhodes et al. (2013) has been revised with the updated ice age scale published in Sigl et al. (2015) and the new estimate of age provided by Buizert et al. (Buizert et al., 2014). Mitchell et al. (2013) have synchronised the GISP2 \(\text{CH}_4\) record with the WAIS \(\text{CH}_4\) record to investigate changes of the Inter Polar Difference in the Pre-Industrial based on the reasoning that “the multidecadal events observed in both ice core records must have occurred simultaneously since the durations of the events were much larger than the atmospheric mixing time (~1 year)” (Mitchell et al., 2013). The NEEM \(\text{CH}_4\) record has not been synchronised with the others, and there are multiple possible reasons, including age scale issues, different smoothing of the atmospheric signals at the different sites and inadequate sampling resolution, to explain the discrepancy found between the NEEM and the GISP2/Law Dome/WAIS \(\text{CH}_4\) records during the LIA. A thorough investigation is out of the scope of this paper, but, in the future, this discrepancy should be resolved to obtain a precise synchronisation of all ice core records available over the LIA.

- The N\(_2\)O records from Greenland (Flückiger et al., 1999, Eurocore and GRIP, gray and white squares in Fig. 4d, respectively) and from EDC (Flückiger et al., 2002, green squares in figure 4d) show higher scatter than the Law Dome N\(_2\)O record. All records need higher sampling resolution to investigate changes of atmospheric N\(_2\)O concentration over the last centuries with more confidence. A new N\(_2\)O record from a high resolution site is required to explore the real variations of N\(_2\)O in the Pre-Industrial Period (Ryu et al., 2018).

3.3 The LIA and the 1610 AD CE \(\text{CO}_2\) minimum in DSS (Law Dome)

In an attempt to produce \(\delta^{13}\text{C}\) data around the Law Dome 1610 AD CE \(\text{CO}_2\) minimum (inadequately sampled by Francey et al., 1999) and confirm the interpretation of its terrestrial origin (Rubino et al., 2016; Trudinger et al., 1999), in 2012 we measured 18 samples from DSS, the only core at Law Dome covering the whole LPIH. The results both for \(\text{CO}_2\) and for \(\delta^{13}\text{C}\) are significantly lower than the spline fit to the revised records from Law Dome (results not shown). On the contrary, the \(\text{CH}_4\) concentration measured is very consistent with the spline fit to the revised \(\text{CH}_4\) record. In the past, abnormally low \(\text{CO}_2\) concentration was interpreted as a sign of post coring melting (PCM), \(\text{CO}_2\) being much more soluble than \(\text{CH}_4\). With PCM, the N\(_2\)O concentration is usually low as well. However, in 7 of the 18 DSS samples that provided enough air to measure N\(_2\)O, the N\(_2\)O concentration was, on average, not significantly lower than the spline fit to the revised Law Dome record. This argues against the hypothesis of PCM. Another possibility is the effect of clathrate formation which could alter \(\text{CO}_2\) and \(\delta^{13}\text{C}\), but issues due to clathrate can be ruled out because none of the ice cores in this study reached depths or temperatures sufficient for clathrate formation which can affect the extraction and measurement of enclosed gases and \(^{13}\text{C}-\text{CO}_2\) in particular (e.g. Schaefer et al., 2011). We do not have a definite explanation for the low \(\text{CO}_2\) and \(\delta^{13}\text{C}\) measured, but the
results suggest that the DSS core may no longer be a reliable archive for CO₂. This experiment was conducted while we were measuring the DSS0506 CO₂ samples published in Rubino et al. (2016). During that survey, we also found a similar behaviour for 6 of the 34 DSS0506 samples measured. Since the two cores - DSS0506 and DSS - were stored in the same freezer in Hobart (Tasmania, Australia), with DSS0506 stored for a shorter period of time, we suggest the low CO₂ may be a recent effect of storage (see Supplement to Rubino et al., 2016).

The LIA, and particularly the 1610 AD-CE CO₂ event, is important for our understanding of the carbon cycle dynamics and the carbon-climate system in the past. It has been used to derive the CO₂ sensitivity to temperature (Cox and Jones, 2008; Rubino et al., 2016), it is the most prominent biogeochemical event during the LPIH, and it has even been suggested as the beginning of the new geologic era called the Anthropocene (Lewis and Maslin, 2015). Therefore, it is of fundamental importance that we understand the amplitude of the minimum as recorded by the ice and the timing and likely size of the original atmospheric decrease before smoothing during firm diffusion and enclosure into bubbles. Considering that:

- All GHG records in ice cores are a smoothed representation of the real atmospheric history;
- DSS is the highest accumulation rate site ever sampled in Antarctica recording the LIA CO₂ event;
- There is the risk that the WAIS core is affected by in-situ production of CO₂;
- Accurate CO₂ record have not been derived from Greenland ice cores

we suggest that there is a need to sample a new, clean and deep ice core from Law Dome, to recover the real atmospheric LIA CO₂ decrease and other rapid changes in atmospheric composition during Pre-Industrial millennia.

3.4 Biogeochemical and climatic interpretation of the Law Dome GHG records

The Law Dome GHG records have been used for biogeochemical and climatic interpretation of changes in CO₂ (Joos et al., 1999; Joos and Bruno, 1998; Rubino et al., 2013; Trudinger et al., 2002a), CH₄ (Ferretti et al., 2005; Ghosh et al., 2015), and N₂O (Park et al., 2012) over the past decades to millennia. They are also used as reference atmospheric GHG records for model simulations of the carbon-climate system of the LPIH (Graven et al., 2017; Köhler et al., 2017b; Meinshausen et al., 2017). Here we present an overview of the insight obtained through interpretation of the Law Dome GHG records, and provide some perspective on the challenges we will have to face to obtain a deeper understanding of the carbon-climate system during the LPIH and the Industrial Period.

The biogeochemical interpretation of GHG variations depends on quantifying their sources and sinks. The concentration of GHGs in the atmosphere is the net result of the processes releasing GHGs to the atmosphere (sources) and processes removing GHGs from the atmosphere (sinks). The atmospheric circulation, then, redistributes GHGs assuming consistency in the reasonably well known patterns of air movement. Measuring the atmospheric concentration of GHGs provides one constraint on the net sources vs sinks. However, generally, multiple sources and sinks act simultaneously. Therefore, multiple constraints are necessary to partition the contribution of each source or sink. Measuring the isotopic composition of
each GHG provides an additional constraint (albeit usually with additional complexity), but there are also other independent constraints, such as the inter-hemispheric difference or evidence coming from other species, that help quantify the contribution of sources and sinks. Additionally, the net GHG emission strength is reflected in the rate of change of atmospheric concentration. So, ice core records that track rapid changes (i.e. high resolution) are best to infer budgets and hence biogeochemical information before direct atmospheric observations. The Law Dome records provide the highest resolution among existing Antarctic ice cores. There have been recent studies looking into the effects of firn microstructure (including density layers) on bubble trapping (Burr et al., 2018; Fourteau et al., 2017; Gregory et al., 2014; Mitchell et al., 2015). Improved understanding of these processes, how they affect smoothing of atmospheric GHG signals, and their incorporation into numerical models may lead to a more accurate quantification of the relationship between ice core GHG measurements at different sites and the original atmospheric variations.

CO₂: There are two major reservoirs that can change atmospheric concentrations over years to millennia are the terrestrial biosphere (land) and the oceans. Fossil fuel and land use emissions have added to these over recent centuries. Measurements of δ¹³C-CO₂ have been used to quantify the contribution of land and ocean to the atmospheric CO₂ variations measured (Joos et al., 1999; Joos and Bruno, 1998; Trudinger et al., 2002a). For example, the interpretation of CO₂ and δ¹³C-CO₂ variations through a Double Deconvolution (Fig. 4a6a) has identified the terrestrial biosphere as the main contributor to the LIA CO₂ decline (Rubino et al., 2013, 2016; Trudinger et al., 2002a). This agrees with the findings of Bauska et al. (2015) who used the WAIS CO₂ and δ¹³C-CO₂ records to suggest that changes in terrestrial organic carbon stores best explain the observed multi-decadal variations in the δ¹³C-CO₂ and in CO₂ concentrations from 755 to 1850 AD CE. This agreement of interpretation from the DSS and WAIS records shows that what matters for the biogeochemical interpretation is the change in concentration over time, rather than the absolute concentration measured in different ice cores. The above studies assume consistency in the inter-hemispheric transport of Northern Hemisphere terrestrial emissions over multiple decades. Preliminary examination suggests Southern Hemisphere δ¹³C-CO₂ recent records over the last decades are more susceptible to multi-year changes in the ratio of eddy to mean advective interhemispheric transport (Francey and Frederiksen, 2016; Frederiksen and Francey, 2018) than is the case for CO₂ concentration, as a result of differences in isotopic equilibration that occur for the two transport modes. An additional constraint for the biogeochemical interpretation of the LIA CO₂ decrease has recently come from the new interpretation (Rubino et al., 2016) of the record of carbonyl sulfide (COS, Aydin et al., 2008) from the SPRESSO ice core (South Pole Remote Earth Science and Seismological Observatory) and modelling of its increase over the LIA (Rubino et al., 2016). Rubino et al. (2016) showed that the simultaneous COS increase during the LIA confirms that the LIA CO₂ decline was caused by net terrestrial uptake due to cooling (heterotrophic respiration declining more than Gross Primary Production, due to its higher dependence sensitivity on temperature changes). Clearly, though a very recent paper estimating the amount
of carbon taken up by land use change following the colonisation of the Americas by the Europeans (Koch et al., 2019) provides a different view. Nonetheless, a multi-species approach used by Rubino et al. (2016, e.g. using trends of CO2, δ13C-CO2 and COS) can provide multiple constraints to help understand the biogeochemical processes behind atmospheric CO2 variations over the recent past.

The 1940s CO2 plateau is a prominent feature in the Industrial part of the Law Dome CO2 record, and occurs at a time of continued fossil fuel emissions. Taking into consideration the smoothing effects of firn diffusion and bubble trapping on the rate of change of potential atmospheric signals, an uptake of around 2-3 GtC/yr between 1942-49 would be required to explain the observed plateau. The Law Dome δ13C-CO2 measurements suggest that the oceans were responsible for at least two thirds of this uptake (Rubino et al., 2013; Trudinger, 2000, section 6.4; Trudinger et al., 2002a). Bastos et al. (2016) used the latest estimates of fossil-fuel and land-use change emissions, ocean uptake reconstructions and terrestrial models, but was not able to explain the plateau, although they did not consider decadal variability in the ocean carbon sink that may have been important. Better understanding of the 1940s feature is needed to quantify how variable ocean and land carbon exchange can be on multi-year to decadal timescales, and how this variability relates to climate variability. Improved understanding is expected to come from more high-precision, high-time-resolution ice core measurements to confirm δ13C-CO2 variation through the Industrial Period, additional constraints such as COS, better understanding of the smoothing effects on trapped air along with improved modelling of other influences on atmospheric δ13C-CO2 such as the effect of climate on isotopic discrimination (Randerson et al., 2002; Scholze et al., 2003).

CH4: There are multiple natural sources/sinks: geological, wetlands, wildfires, termites, and ocean sediments are the main sources, while oxidation by tropospheric species [OH], oxidation by stratospheric species [OH, Cl and O(1D)], and oxidation in soils and reactive chlorine in the marine boundary layer are the main sinks. Also for CH4, measurements of its isotopic composition (δ13C-CH4 and δD-CH4) have helped quantify the contribution of land vs ocean to the measured atmospheric CH4 variations (Ferretti et al., 2005; Mischler et al., 2009; Sapart et al., 2012). However, because there are more distinct CH4 source types than isotopic tracers, and more spatially distributed sources than can be resolved by the geographically restricted suite of ice cores (despite the fact that the ice cores of Antarctica and Greenland are both known to provide reliable CH4 records), a unique solution for the history of CH4 sources is not possible. Nonetheless, the full suite of isotopic tracers and bipolar ice core data provides important boundary conditions for testing hypothetical CH4 source/sink histories, allowing elimination of large classes of scenarios. By measuring δ13C-CH4 in Law Dome ice, Ferretti et al. (2005) provided evidence of a remarkable decrease of pyrogenic CH4 during the last millennium (Fig. 4). This interpretation was confirmed by Mischler et al. (2009) and Sapart et al. (2012), who measured both δ13C-CH4 and δD-CH4 in ice cores from Antarctica and Greenland respectively. They also found an increasing agricultural source of CH4 throughout the last millennium, with most of the change between the 1500s and the 1600s, supporting the hypothesis of an early pre-industrial anthropogenic influence on atmospheric CH4. Additional source information is provided by measurements of carbon monoxide (CO) and its...
isotopes (δ^{13}C-CO and δ^{18}O-CO, Wang et al., 2010), through evidence of variations of biomass burning, and 14CH4, which identifies CH4 emissions from fossil sources. However, the measurement of 14CH4 which is limited so far to large air samples extracted from firn (Lassey et al., 2007b, 2007a) or from large ice samples collected where glacial-age ice outcrops at the surface (Petrenko et al., 2009, 2017).

N2O: There are also multiple natural sources and sinks of N2O, both on land and in the ocean. The main sources are microbiological processes, especially in tropical soils, while the main sinks are photochemical reactions in the atmosphere. To the best of our knowledge, there are only two attempts to use δ^{15}N-N2O and δ^{18}O-N2O records to better constrain the land vs ocean sources of N2O over the last century (Park et al., 2012; Prokopíou et al., 2017), and these used the larger volumes of air available in firn. No study has extended the investigation to the last millennia, but there is an analysis covering the Last Deglaciation by Schilt et al. (2014). As already mentioned, the Pre-Industrial inter-hemispheric N2O difference is also poorly constrained. Thus, there is room for vast improvement to understand the N cycle from measurements of N2O concentration and its isotopes in ice cores (Schilt et al., 2014). However, there is a risk of in-situ production of N2O, especially in Greenland ice (Flückiger et al., 2002). More records, with high sampling resolution, from both hemispheres are needed to confirm the features found in Law Dome (MacFarling Meure et al., 2006) and understand the causes of the changes in N2O concentration over time (Ryu et al., 2018).

The climatic interpretation of the Law Dome GHG records has generally been carried out by comparing the timing of GHG variations and temperature changes, and testing hypotheses of mechanistic relationships between the two with coupled carbon cycle-climate models. Medieval Climate Anomaly: An important climatic event of the LPIH is the Medieval Climate Anomaly (MCA, roughly 950–1250 AD CE), which showed higher temperature in some regions (Goosse et al., 2005; Mann et al., 2009). During the MCA, there are generally higher levels of GHGs, but the timings of increase vary from one gas to another, with N2O showing a rise between 701 and 822 AD CE (well before the start of the MCA), CO2 increasing between 950 and 1200 AD CE, and CH4 showing some variability superimposed on a long-term increasing trend (Fig. 3b-d).

Little Ice Age: The main climatic event of the last two millennia is the LIA (roughly 1400-1700 CE, Mann et al., 2008; Neukom et al., 2014; Pages2k, 2013). There is a clear decrease of all GHG during the LIA, which, together with the other evidence mentioned above, suggests that all processes releasing GHG from land slowed down during the cold phase (Fig. 3-4 b-d). However, as for the MCA, the change in concentration is not simultaneous for all GHG. While both CO2 and N2O seem to decrease starting around 1550 AD CE (but N2O would need higher sampling resolution to confirm this), CH4 has a later decline, starting around 1580 AD CE. Also, the CH4 decrease seems to last for a shorter period of time, ending around 1610 AD CE, whereas the CO2 low is maintained longer, ending about 1750 AD CE. At the same time, there was a significant decrease of biomass burning (Ferretti et al., 2005; Mischler et al., 2009; Sapart et al., 2012; Wang et al., 2010), interpreted to be mostly a consequence of decreased fire emissions. While the relationship between CO2 and temperature variation has
been used to infer the sensitivity of CO$_2$ to temperature (Cox and Jones, 2008; Rubino et al., 2016), confirming and quantifying a positive feedback of terrestrial carbon with temperature (Rubino et al., 2016), it is now time to investigate the regional contribution to the total CO$_2$ change, as attempted by Bauska et al. (2015), and the contribution from different processes within the terrestrial biosphere, such as net primary production, heterotrophic respiration and biomass burning. There are regional (Mann et al., 2008), continental (Pages2k, 2013) and hemispheric (Neukom et al., 2014) temperature reconstructions that can be used to drive Coupled Carbon Cycle Climate Models—models describing the relationship between climate and carbon cycle—to quantify the contribution from each region to the total CO$_2$ decrease (Fig. 4b6c). There are also hydro-climatic reconstructions (Cook et al., 2009, 2010, 2015) providing evidence of dry and wet periods over the LPIH (Fig. 4d6d), which can be used, together with records of charcoal (Marlon et al., 2013, 2016) and biomass burning tracers in ice cores (Grieman et al., 2017) to quantify the contribution of declining biomass burning in each region to the total CO$_2$ decrease. The emissions from anthropogenic land use change have also been quantified for each world region (Pongratz and Caldeira, 2012, see Fig. 6e), and can be used to subtract the human contribution from the total CO$_2$ change, even though there is a debate on the amount of land use change following the European colonisation of the Americas (Koch et al., 2019). Therefore, we suggest that the LIA provides a suitable epoch to further study carbon cycle-climate feedbacks, for predictions of the future carbon-climate system, particularly to understand the role of different regions of the world on changes of atmospheric chemistry and biogeochemical fluxes and carbon pools. The consequences of the LIA climatic changes on contemporary societal development are important for understanding why different communities were more or less vulnerable, resilient or even adaptive (Degroot, 2018). Being able to quantify which regions have been more vulnerable to past climate change, also in terms of the response of the natural carbon cycle, could help plan future adaptation strategies and plan future choices accordingly.

4 Conclusions

The records of GHG (CO$_2$, CH$_4$, N$_2$O) concentrations and their isotopic composition of CO$_2$ (δ13C-CO$_2$, δ14C-CH$_4$, δD-CH$_4$, δ15N-N$_2$O, δ18O-N$_2$O) from the Law Dome ice cores are one of among the most important sources of information for models trying to predict the future behaviour of biogeochemical cycles and their influence on the climate system. The records of CO$_2$, CH$_4$, N$_2$O and δ13C-CO$_2$ are constantly being updated with new measurements, and revised for changes in calibration scales and corrections for the effects of laboratory extractions and those of gravity and diffusion in firn. This paper has provided an in-depth explanation of the procedures used to extract and measure the samples in CSIRO-ICELAB, and store, correct and select the results obtained. Given the widespread use of the datasets produced at CSIRO ICELAB-GASLAB, it is important to provide a track record of the reasons for changes carried out over time, and keep the records open to the
scientific community. This should help with their use in modelling and avoid misinterpretation (for example, the mistake spotted by Köhler et al., 2017a, in the paper from Machado and Froehner, 2017).

The GHG records from Law Dome have already provided significant insight into biogeochemical and climatic feature over the last centuries. However, there is room for deeper understanding, for example studying the influence of different regions on variations in atmospheric chemistry. Also, there are unresolved discrepancies (e.g. the LIA CO$_2$ decrease) which need to be resolved and Law Dome appears to provide the most suitable ice cores for high resolution investigation of atmospheric changes over the last centuries. Considering that:

- All GHG records in ice cores are a smoothed representation of the real atmospheric history;
- DSS is the highest accumulation rate site ever sampled in Antarctica recording the LIA CO$_2$ event;
- There is the risk that the WAIS core is affected by in-situ production of CO$_2$;
- Accurate CO$_2$ record have not been derived from Greenland ice cores

we suggest that there is a need to sample a new, clean and deep ice core from Law Dome, to recover the real, confirm or improve our knowledge of the atmospheric LIA CO$_2$ decrease and other rapid changes in atmospheric composition during Pre-Industrial millennia.

Finally, there are open questions about the real size of past atmospheric variations of some species, such as N$_2$O and COS, and the reasons for those variations, which, once resolved with new measurements, could provide additional understanding and insights, useful to better predict the future behaviour of biogeochemical cycles and their influence on the climate system.

Author contribution

MR conceived the database structure, performed measurements between 2009-2013 and wrote the paper. DME supervised the process, performed measurements between 1992-2003 and collected samples. RH wrote the database queries and procedures in Microsoft SQL server and developed the web-based user interface with Microsoft Visual Studio. DPT, CEA, RJF, RLL, PLS-LPS and DAS carried out measurements of samples and standards in GASLAB, and performed calibration scale updates. CMT carried out the numerical modelling interpretation, including the CSIRO firn model, the Double Deconvolution and the Spline fit to the data. MAJC, TDVO and AMS collected, stored and distributed samples and contributed to ice dating.

Acknowledgments

We acknowledge the long-term support provided to this work by CSIRO, the Department of Energy and Environment, the Australian Antarctic Division and Australian Antarctic Program, Australian Antarctic Science Program, and the many people involved in collecting the several ice cores and firm air samples from Law Dome since the 1980s. In particular chief driller of
the DSS ice core Alan Elcheikh (1960-2019). We thank Rachael Rhodes and Michael Sigl for providing updated ice and gas age scales for NEEM. We also thank to the 2 anonymous referees for their comments, which have helped improving the original manuscript.

Data Availability

Data connected with this paper are available in the CSIRO Data Access Portal (https://doi.org/10.25919/5bfe29ff807fb). Each species has been ordered by core and by age. In detail, for each species and each record the following fields are available (Rubino et al., 2018):

- Sample ID
- Ice Age
- Gas age
- Value
- Uncertainty

For each species, the calculated spline fit with time steps of 1 year and growth rate are also given. The spline fits attenuate variations with periods of less than 20 years by 50% for CO$_2$ and CH$_4$, 100 years for N$_2$O and 50 years for δ^{13}CO$_2$ When using these data please consider citing the original publications from which the data underlying this compilation have been taken.

References

Aydin, M., Williams, M. B., Tatum, C. and Saltzman, E. S.: Carbonyl sulfide in air extracted from a South Pole ice core: A

Bauska, T. K., Joos, F., Mix, A. C., Roth, R., Ahn, J. and Brook, E. J.: Links between atmospheric carbon dioxide, the land carbon reservoir and climate over the past millennium, Nat. Geosci., 8(5), 383–387, doi:10.1038/ngeo2422, 2015.

Scholze, M., Kaplan, J. O., Knorr, W. and Heimann, M.: Climate and interannual variability of the atmosphere-biosphere

Trudinger, C. M., Enting, I. G., Rayner, P. J. and J., F. R.: Kalman filter analysis of ice core data 2. Double deconvolution of

Tschumi, J. and Stauffer, B.: Reconstructing past atmospheric CO\textsubscript{2} concentrations based on ice-core analyses: open questions due to in situ production of CO\textsubscript{2} in the ice, J. Glaciol., 46(152), 45–53, 2000.

Figure captions

Figure 1: Map of the Law Dome region, slightly modified from Smith et al. (2000), showing the location of the drilling sites DE08, DE08-2, DSS, DSS0506 and DSSW20K discussed in the text. Dotted lines are accumulation isopleths (kg m\(^{-2}\) yr\(^{-1}\)) and unbroken lines are elevation contours (meters above sea level). The inset shows the location of the region in Antarctica.

Figure 2: Published Pre-Industrial Period (1-1900 AD) GHG records from Law Dome ice extracted and measured at CSIRO ICELAB-GASLAB. (a) CO\(_2\); (b) CH\(_4\); (c) \(\delta^{13}\)C-CO\(_2\) and (d) N\(_2\)O

Figure 23: Published and unpublished Industrial Period (1750-2000) GHG records from Law Dome ice and firn, extracted and measured at CSIRO ICELAB-GASLAB. (a) CO\(_2\); (b) CH\(_4\); (c) \(\delta^{13}\)C-CO\(_2\) and (d) N\(_2\)O

Figure 34: Revised records (100-1900 AD) of (a) \(\delta^{13}\)C-CO\(_2\); (b) CO\(_2\); (c) CH\(_4\) and (d) N\(_2\)O from Law Dome ice compared to published records from other sites: WAIS-\(\delta^{13}\)C-CO\(_2\) from Bauska et al. (2015), WAIS-CO\(_2\) from Ahn et al. (2012), DML-CO\(_2\) and -\(\delta^{13}\)C-CO\(_2\) from Rubino et al. (2016), EDML- and South Pole-CO\(_2\) from Siegenthaler et al. (2005), WAIS-CH\(_4\) from Mitchell et al. (2011), NEEM-CH\(_4\) from Rhodes et al. (2013) and GISP2-CH\(_4\) from Mitchell et al. (2013), Eurocore- and GRIP-N\(_2\)O from Flückiger et al. (1999), EDC-N2O from Flückiger et al. (2002).

Figure 5: Revised records (1750-2010 AD) of (a) \(\delta^{13}\)C-CO\(_2\); (b) CO\(_2\); (c) CH\(_4\) and (d) N\(_2\)O from Law Dome ice and firn compared to the South Pole firn records of \(\delta^{13}\)C-CO\(_2\), CO\(_2\), N\(_2\)O and to published records from other sites: WAIS-\(\delta^{13}\)C-CO\(_2\) from Bauska et al. (2015), WAIS-CO\(_2\) from Ahn et al. (2012), DML-CO\(_2\) and -\(\delta^{13}\)C-CO\(_2\) from Rubino et al. (2016), EDML- and South Pole-CO\(_2\) from Siegenthaler et al. (2005), WAIS-CH\(_4\) from Mitchell et al. (2011), NEEM-CH\(_4\) from Rhodes et al. (2013) and GISP2-CH\(_4\) from Mitchell et al. (2013), Eurocore-N\(_2\)O from Flückiger et al. (1999).

Figure 46: Biogeochemical and climatic interpretation of the Law Dome GHG records: (a) atmospheric CO\(_2\) fluxes from (negative values on the y axis) and to (positive values on the y axis) the terrestrial biosphere (land: green line) and the ocean (blue line), resulting from the Double Deconvolution of CO\(_2\) and \(\delta^{13}\)C-CO\(_2\) (Rubino et al., 2016). (b) Temperature variations of different continents in the Northern Hemisphere (Asia: yellow line, Europe: blue line; North America: red line) from Pages2k (2013). (c) Flux of atmospheric CH\(_4\) from biomass burning (Ferretti et al., 2005); (c) Temperature variations of different continents in the Northern Hemisphere (Asia: yellow line, Europe: blue line; North America: red line) from Pages2k (2013); (d) Palmer Drought Severity Index (PSDI) of different continents in the Northern Hemisphere (Asia: yellow line, Europe: blue line; North America: red line) from Cook et al. (2009, 2010, 2015) (d) Atmospheric CO\(_2\) fluxes from different continents in the Northern Hemisphere (Asia: yellow line, Europe: blue line; North America: red line) due to Pre-Industrial land use change from Pongratz et al. (2012).
Figure 1: Map of the Law Dome region, slightly modified from Smith et al. (2000), showing the location of the drilling sites DE08, DE08-2, DSS, DSS0506 and DSSW20K discussed in the text. Dotted lines are accumulation isopleths (kg m\(^{-2}\) yr\(^{-1}\)) and unbroken lines are elevation contours (meters above sea level). The inset shows the location of the region in Antarctica.
Figure 4.2: Published Pre-Industrial Period (1-1900 AD) GHG records from Law Dome ice extracted and measured at CSIRO CELAB-GASLAB. (a) CO₂; (b) CH₄; (c) δ¹³C-CO₂ and (d) N₂O
Figure 23: Published and unpublished Industrial Period (1750-2000 AD) GHG records from Law Dome ice and firn, extracted and measured at CSIRO ICELAB-GASLAB. (a) CO₂; (b) CH₄; (c) δ¹³C-CO₂ and (d) N₂O
Figure 34: Revised records (100-1900 AD) of (a) δ^{13}C-CO$_2$; (b) CO$_2$; (c) CH$_4$ and (d) N$_2$O from Law Dome ice compared to published records from other sites: WAIS-δ^{13}C-CO$_2$ from Bauska et al. (2015), WAIS-CO$_2$ from Ahn et al. (2012), DML-CO$_2$ and -δ^{13}C-CO$_2$ from Rubino et al.
(2016), EDML- and South Pole-CO₂ from Siegenthaler et al. (2005), WAIS-CH₄ from Mitchell et al. (2011), NEEM-CH₄ from Rhodes et al. (2013), and GISP2-CH₄ from Mitchell et al. (2013), Eurocore- and GRIP-N₂O from Flückiger et al. (1999), EDC-N₂O from Flückiger et al. (2002).
Figure 5: Revised records (1750-2010 AD) of (a) \(\delta^{13}\text{C}-\text{CO}_2\); (b) \(\text{CO}_2\); (c) \(\text{CH}_4\) and (d) \(\text{N}_2\text{O}\) from Law Dome ice and firn compared to the South Pole firn records of \(\delta^{13}\text{C}-\text{CO}_2\), \(\text{CO}_2\), \(\text{N}_2\text{O}\) and to published records from other sites: WAIS-\(\delta^{13}\text{C}-\text{CO}_2\) from Bauska et al. (2015), WAIS-\(\text{CO}_2\) from Ahn et al. (2012), DML-\(\text{CO}_2\) and -\(\delta^{13}\text{C}-\text{CO}_2\) from Rubino et al. (2016), EDML- and South Pole-\(\text{CO}_2\) from Siegenthaler et al. (2005), WAIS-\(\text{CH}_4\)
from Mitchell et al. (2011), NEEM-CH\textsubscript{4} from Rhodes et al. (2013) and GISP2-CH\textsubscript{4} from Mitchell et al. (2013), Eurocore-N\textsubscript{2}O from Flückiger et al. (1999).
Figure 46: Biogeochemical and climatic interpretation of the Law Dome GHG records: (a) atmospheric CO$_2$ fluxes from (negative values on the y axis) and to (positive values on the y axis) the terrestrial biosphere (land: green line) and the ocean (blue line), resulting from the Double Deconvolution of CO$_2$ and δ^{13}C-CO$_2$ (Rubino et al., 2016). (b) Temperature variations of different continents in the Northern Hemisphere (Asia: yellow line, Europe: blue line; North America: red line) from Pages2k (2013); (c) Flux of atmospheric CH$_4$ from biomass burning (Ferretti et al., 2005); (c) Temperature variations of different continents in the Northern Hemisphere (Asia: yellow line, Europe: blue line; North America: red line).
line) from Pages2k (2013); (d) Palmer Drought Severity Index (PSDI) of different continents in the Northern Hemisphere (Asia: yellow line, Europe: blue line; North America: red line) from Cook et al. (2009, 2010, 2015) (e) Atmospheric CO$_2$ fluxes from different continents in the Northern Hemisphere (Asia: yellow line, Europe: blue line; North America: red line) due to Pre-Industrial land use change from Pongratz et al. (2012).
S1 ICELAB database

The ICELAB-GASLAB is a Microsoft SQL Server that consists of numerous tables linked together by a Universal Analysis Number (UAN) that is assigned to each sample prior to analysis. The UAN is contained in every table and serves as the index connecting all information about the sample. The structure of the database, ie hierarchy of tables, reflects the chronological sequence of steps involved in collecting a sample (ice-core, firn-air), preparing an ice sample, extracting air from that sample and analysing the concentration and isotopic composition of the extracted air (only the ICE-relevant tables and procedures are described here). The web-interface to the ICELAB database, developed with Microsoft Visual Studio, is shown in Fig. S1. It indicates the general structure and relationships crucial to the database, as described below.

Samples are divided into three categories (ICE, Tests and FIRN), and data pertaining to these categories are stored in separate tables. Whenever a unique air sample is prepared (ICE, Test or FIRN) a unique UAN is created and stored in the relevant table.

"ICE" contains the ice sample ID (e.g.: "DE08-256", or "DSS-144"), ice collection parameters, depth, age, mass and volume (calculated using an average ice density), along with comments pertaining to the visual, glaciological characteristics (such as "crusts", "melt layers", "cracks", etc.). Also included are the operator’s initials and the preparation date.

"TEST" contains information about the type of test ("Blanks" and "BFI") and a sample comment (e.g.: "BFI no shaking", that is without shaking the ice grater, or "BFI Ar-sparged", that is BFI grown under a flow of Argon), reference gas used (that is the reference tank or flask of known composition used for the test), and physical parameters such as mass and volume. This also contains the operator’s initials and the preparation date.

"FIRN" contains information about the sample collection (depth, age, volume of gas pumped, sampling date and time, pressure of the sample after sampling and the type of firn air sampling device used).

Further tables store information about the sample preparation and combine information that is stored in other tables, such as in the GASLAB database, to collect relevant information in a central location, as described below.

"EXTRACTION" contains information about the extraction procedure, and is therefore relevant only for ice and test samples (firn samples need no extraction). This table includes extraction date and time, storage period (i.e. time between preparation and extraction), storage temperature, the ID number of the “grater” used, the composition of the material used to seal the grater (either "Indium" or "Copper"), ID number of the sample trap, a number of fields recording the various pressure levels measured at each step of the extraction procedure (e.g.: "Pressure in the extraction line before water trap cooling", "Pressure in the extraction line after water trap cooling", "Pressure after sample grating", etc.), the volume of air extracted (calculated from the "pressure after sample grating" and the "volume of the extraction line"), the residual mass of uncrushed ice, the calculated extraction efficiency (from the air released and the mass of ice crushed).

"Analysis Data" contains information for ice, firn and test samples, including the number of replicate measurements, the analysis date and time, the sample storage period (time between extraction and analysis) and the volume injected in each instrument. “Analysis Data” is linked to other tables, named after the species analysed ("CH₄", "CO₂", "CO", "H₂"
and “N₂O”) and these are generated by importing the results of the GC measurements (the concentration measured both from the area and from the height of the GC peak) from the GASLAB database.

"Average Analysis Info" stores the averaged results for each measured species. This includes the arithmetic average for repeat measurements (or single value), the weighted (if applicable) average (calculated using the criteria described in the section Selection Criteria below), the difference between arithmetic and weighted averages, range of measured values (for replicates only) and the difference between the measured and the expected value (for test samples).

"ICE 13C" and "FIRN 13C" import and store the information from a separate database, ISOBASE, that contains the results of the isotopic analyses. The information stored includes the analysis date, the sample storage period (between extraction and analyses), the signal measured for the most abundant isotopomer (at m/e 44), the raw isotopic delta values with respect to the working standard used (δ¹³CO₂ and δ¹⁸O) and the corrected delta values on the VPDB scale (δ¹³C and δ¹⁸O). Both sets of delta values are provided with combined uncertainty estimates for the entire analysis and calculation procedure.

"Ice/FirmCorrected" contains information for ice and firn samples that have been corrected using Tests information. ICE samples are corrected for extraction procedure effects, whereas both ICE and FIRN samples are corrected for gravity and diffusion effects in the firn. Corrections are applied in the following order:

"Blank corrected average": the "Weighted average" corrected for effects of the extraction procedure, estimated through the test samples, and with an associated uncertainty estimate.

"Gravity corrected average": the "Blank corrected average" corrected for the effect of gravity in the firn, estimated from firn diffusion model (Trudinger et al., 1997, 2013), and with an associated uncertainty estimate

"Diffusion corrected average": the "Gravity corrected average" corrected for the effect of diffusion in the firn. This is only applied to measurements of the CO₂ isotopic composition (Trudinger et al., 1997), and with an associated uncertainty estimate

A final quality assessment (selection tick) is assigned after the corrections based on the criteria described below.

Every table allows comments to be added so that one can assess each stage of the correction procedure.

"Reference and Lookup" tables contain information that is used for correction and assessment procedures. The information allows us to:

a. derive the ice age from the depth at which the ice sample was collected,

b. derive the gas-age from the ice-age-vs-gas-age difference for ice samples and gas-age vs depth for firn samples. For firn samples, the dating is based on the firn air diffusion model, whereas for ice samples it is based on a number of factors, including firm model (Trudinger et al., 2013),

c. apply blank, gravity and diffusion corrections to measurements,

d. store and access information available from different types of measurements that are not part of the usual GASLAB/ICELAB analytical procedures (e.g δ¹⁸O, H₂O₂, etc...).

Finally, "Ice/Tests/Firm Output" are web-based interfaces that allow data extract based on multiple criteria.

S1.1 Sample selection

A rule-based method has been developed to allow for consistent and automatic sample flagging. The method separately considers the two parts where biases can be introduced:
1. **Sample storage/preparation/extraction:** flags have been associated with any possible source of uncertainty or bias. The diagnostic fields that have an associated flag are:

 a. Fields describing visual characteristics, such as "crusts", "melt layers", "cracks", etc…

 b. Fields recording the main factors influencing the extraction procedure, e.g.: "Pressure in the extraction line before water trap cooling", "Pressure in the extraction line after water trap cooling", "Temperature of cryogenic trapping", etc…

 c. The measured CO concentration: carbon monoxide is used as a diagnostic tool. High CO values have been measured in Greenland ice (Francey et al., 1997) together with high CO₂ and low δ¹³C-CO₂, suggesting in situ oxidation of organic material deposited on the Greenland icecap (Francey et al., 1997) as it can be produced in situ by chemical/biological reactions and is an indication of the quality of the sample. High CO concentrations can also indicate contamination during sample storage/preparation/extraction as the ambient CO concentration is often higher than what it is in ice core bubbles.

 d. Fields having comments typed in by the operator. For these, the operator types in the flag value as well. The flags are assigned integer values between 0 and 3, with 0 being no problem and 3 being evidence of a fatal problem. All flags are averages to provide a "quality score" (q.s.) and this number is used to set a "quality flag" (q.f.), according to the following thresholds:

 - q.f.="reject" if q.s. = 3
 - q.f.="poor" if q.s. > 0.5
 - q.f.="fair" if 0.3 ≤ q.s. ≤ 0.5
 - q.f.="good" if q.s. < 0.3

For example, a melt layer is classified as evidence of a fatal problem of sample quality and provides a q.s. = 3 and a q.f. = "reject".

2. **Sample analysis:** a weighting system has been used to attribute weights (w) to different replicated measurements of the same sample and to calculate a weighted average. Only a few measurements of concentration have been replicated, not for isotopes, for which there has never been enough air to measure replicates. The weights are associated with:

 a. The volume injected into the instruments

 b. Any issue arising from the integration of the GC peak (baseline, shape, etc…)

 c. The difference between the results derived from peak area vs peak height integration.

The weights can get a value between 0 and 1 (0, 0.3, 0.5, 1), with zero being evidence of a fatal problem. A summary weight takes the minimum value of all weights, allowing us to be as conservative as possible, albeit at the cost of losing samples. A "measurement score" (m.s.) averages the summary weights of all replicates, providing one number which is then converted into a "measurements quality" (m.q.):

 - m.q.="poor" if m.s. < 0.4
 - m.q.="fair" if 0.4 ≤ m.s. < 0.7
 - m.q.="good" if m.s. ≥ 0.7

The weighted average is calculated from the measured concentration (xᵢ) of each replicate and the corresponding summary weight (wᵢ) as: \(\bar{x} = \frac{\sum x_i w_i}{\sum w_i} \) and provides the best estimate of the concentration measured for each sample. The difference between the average and the weighted average shows the impact of the weights on the
averaging. In case the summary weight of a sample equals zero, only the arithmetic average is calculated (m.q.="reject").

While the flagging system refers to the quality of a sample, the weighting system refers to the quality of a measurement. Given that multiple (partially or totally) independent measurements can be performed on a sample (for different species such as CH₄, CO₂, CO and N₂O), there is a summary weight associated with each type of measurement carried out (m.s.CH₄, m.s.CO₂, etc...).

The flagging and weighting thresholds are tuned by calibrating the rule-based selection on the manual selection used before the database was conceived. The idea was to replicate with an automatic procedure what had been done in the past manually. The aim was to make the procedure consistent over time and as independent from the operator as possible. In summary, the rule-based selection converts qualitative judgments on the robustness of sample preparation, extraction and analysis into quantitative scores in order to consistently select/reject the results and quantify uncertainty.

S1.2 Results corrections

A number of corrections are applied to the measured concentrations and isotopic composition of trace gases. They are, following the order in which they are applied:

- **The blank correction:** this is related to any effect arising during sample storage/preparation/extraction. To quantify these effects, tests are run with (BFI) or without ice (Blanks). There is no reference ice core material, with known concentration and isotopic composition of trace gases available. We have chosen to simulate the extraction procedure by growing gas-free ice (that is ice with no visible bubbles and is thus assumed to be gas-free) and inject a reference gas in the extraction line before starting the extraction procedure. This is in part also simulating the storage and the preparation because the BFI is trimmed at the same stage of processing and with the same band saw used for ice core samples, and is stored between preparation and extraction in the same conditions as ice core samples. The blank correction is quantified by the average deviation of replicated BFI/Blanks measured concentration and isotopic composition from the expected value (i.e.: the value associated with the reference gas used). A blank correction is calculated for each period when the conditions of preparation/storage/extraction are the same. In other words, a new blank correction is calculated each time any of the factors (operator, freezer, temperature of cold room, duration of extraction, etc...) that are believed to influence preparation/storage/extraction changes. The blank correction has an uncertainty associated with it, given by the standard deviations of differences from the expected value. The blank correction can vary significantly depending on the conditions of the extraction line and on how experienced the line operator is. Typical values are within the following ranges: 0.5-1.5 ppm (uncertainty 0.5-2 ppm, 1σ) for CO₂, 3-10 ppm (uncertainty 3-15 ppb, 1σ) for CH₄, 0.5-3 ppb (uncertainty 0.5-4 ppb, 1σ) for N₂O and 0.03-0.1 ‰ (uncertainty 0.04-0.13 ‰, 1σ) for δ¹³C-CO₂.

- **The gravity correction:** Gravitational enrichment of heavier species in air in the firn open porosity (Craig et al., 1988; Schwander et al., 1988) has different effects depending on the difference between the mass of the measured species and the average mass of air. It can be evaluated as: $[X]_{corr} = 10^{-3} \times \delta^{15}\text{N} \times (M_X - M_{aer}) \times [X]_{meas}$, where X is the measured species (i.e.: CH₄, CO₂ and N₂O), "corr" and "meas" stands for corrected and measured respectively, and $\delta^{15}\text{N}$ is the isotopic ratio of molecular nitrogen (N₂) in air. For δ¹³C measurements, the gravity corrected δ¹³C equals the sum of a correction factor (very close to the δ¹⁵N-N₂) and the measured δ¹³C (see Rubino et al., 2013 for details). The values of δ¹⁵N are often measured in firm to constrain the firm diffusion model. In case of missing δ¹⁵N measurements, the firm
model is constrained with other measurements and then used to simulate the δ¹⁵N profile. Our database stores all measured and modelled δ¹⁵N values for firn sites at Law Dome. At Law Dome, the gravity correction is typically 1-1.5 ppm for CO₂, 2-6 ppb for CH₄, 1-1.4 ppb for N₂O and 0.25-0.3 ‰ for δ¹³C-CO₂.

- The diffusion correction (only for measurements of isotopic composition): For measurements of isotopic ratios in firn and ice air samples, a so-called diffusion correction is needed (Trudinger et al., 1997). This correction arises from the fact that an isotope ratio is the ratio of two isotopes with slightly different diffusion coefficients and therefore slightly different effective ages (Trudinger, 2000, section 3.6). For hypothetical species with constant isotopic ratio, but changing atmospheric concentrations, the isotopic ratio in the firn can be significantly different than from the atmospheric ratio. For δ¹³C, the diffusion correction is proportional to the rate of change of CO₂ concentration, which makes the δ¹³C diffusion correction insignificant in the LHPI, and a very significant term in the Industrial Period. The diffusion correction is estimated using the CSIRO firn diffusion model and, at Law Dome, can range from around 0 in the Pre-Industrial to 0.13 ‰ in the Industrial Period.

We estimated the uncertainty in the gravity and diffusion corrections with the ensemble of diffusivity parameters (Trudinger et al., 2013), including among our parameter sets the possibility of dispersive mixing in the lock-in zone, which may arise from a non-uniform velocity distribution and viscous flow in the firn open porosity (Buizert et al., 2012). The uncertainty associated with gravity and the diffusion corrections are negligible compared to the uncertainty associated with the blank correction.

S1.3 Uncertainty estimation

Because of the small size of ice core samples generally available and the need for large air volume to measure multiple species, it is uncommon to have enough air to perform the vast majority of samples have no replicated measurements. It is, therefore, essential to be able to estimate the uncertainty associated with each one single measurement. The flagging system described above provides a way to attribute an uncertainty to each sample. When replicates are available for one sample, it is important to properly quantify the reliability of each replicate and the contribution it should give to the average and the associated uncertainty. However, the variability associated with replicates of the same sample is negligible compared with the uncertainty associated with the blank correction. The weighting system described above provides a tool to estimate how reliable each replicate is, and, consequently, the impact it should have on the final average and the final uncertainty.

The uncertainty is estimated as the product of the uncertainty associated with the blank correction times an amplification factor which is derived from considerations of the q.s. and the m.s. combined together. This "uncertainty factor" (u.f.) is in the range 1-4:

- u.f.=4 if both q.f. = "reject" and m.q.="reject"
- u.f.=3 if either q.f. = "reject" or m.q.="reject"
- u.f.=2 if both q.f. = "poor" and m.q.="poor"
- u.f.=1.5 if either q.f. = "poor" or m.q.="poor"
- u.f.=1 if both q.f. = "fair/good" and m.q.="fair/good".

In other words, the blank uncertainty is multiplied by 1, 1.5, 2, 3 or 4, depending on the q.f. and the m.q. values, to get a modified blank uncertainty. When q.f. = “reject”, the sample is marked with a rejection flag. However, the result of that sample is retained in the database and a u.f. = 4 is associated with it. The reason why we have decided to do that is to
provide enough flexibility for the operator to overrule the automatic selection when there is a strong reason (e.g. new insight developed over time). If a data user wants to use that sample, the uncertainty associated with the results is very high (4 × the blank uncertainty and then propagated as explained below). The final uncertainty is then calculated as the square root of the sum of the modified blank uncertainty squared, plus the uncertainty associated with the gravity correction squared, plus (but only for measurements of isotopic composition) the uncertainty associated with the diffusion correction squared (Joint Committee for Guides in Metrology, 2008).

Reference list
Figure S1: Screenshot of ICEBASE showing the general structure and the tables of the Icelab database.