Journal cover Journal topic
Earth System Science Data The data publishing journal
Journal topic

Journal metrics

Journal metrics

  • IF value: 8.792 IF 8.792
  • IF 5-year value: 8.414 IF 5-year 8.414
  • CiteScore value: 8.18 CiteScore 8.18
  • SNIP value: 2.620 SNIP 2.620
  • SJR value: 4.885 SJR 4.885
  • IPP value: 7.67 IPP 7.67
  • h5-index value: 28 h5-index 28
  • Scimago H index value: 24 Scimago H index 24
Discussion papers
https://doi.org/10.5194/essd-2018-92
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-2018-92
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

  23 Oct 2018

23 Oct 2018

Review status
This discussion paper is a preprint. It is a manuscript under review for the journal Earth System Science Data (ESSD).

A new global dataset of phase synchronization of temperature and precipitation: its climatology and contribution to global vegetation productivity

Zhigang Sun1,2, Zhu Ouyang1,2, Xubo Zhang1, and Wei Ren3 Zhigang Sun et al.
  • 1Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
  • 2College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
  • 3College of Agriculture, Food and Environment, University of Kentucky, KY 40546-0091, USA

Abstract. Besides cumulative temperature and precipitation, the phase synchronization of temperature and precipitation also helps to regulate vegetation distribution and productivity across global lands. However, the phase synchronization has been rarely considered in previous studies related to climate and biogeography due to a lack of a robust and quantitative approach. In this study, we proposed a synchronization index of temperature and precipitation (SI-TaP) and then investigated its global spatial distribution, interannual fluctuation, and long-term trend derived from a global 60-year dataset of meteorological forcings. Further investigation was conducted to understand the relationship between SI-TaP and the annually summed Normalized Difference Vegetation Index (NDVI), which could be a proxy of terrestrial vegetation productivity. Results show differences in both spatial patterns and temporal variations between SI-TaP and air temperature and precipitation, but SI-TaP may help to explain the distribution and productivity of terrestrial vegetation. About 60% of regions where annually summed NDVI is greater than half of its maximum value overlap regions where SI-TaP is greater than half of its maximum value. By using SI-TaP to explain vegetation productivity along with temperature and precipitation, the maximum increase in the coefficient of determination is 0.66 across global lands. Results from this study suggest that the proposed SI-TaP index is helpful to better understand climate change and its relation to the biota.

Dataset available at http://www.dx.doi.org/10.11922/sciencedb.642 or http://www.sciencedb.cn/dataSet/handle/642.

Zhigang Sun et al.
Interactive discussion
Status: open (until 18 Dec 2018)
Status: open (until 18 Dec 2018)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement
Zhigang Sun et al.
Data sets

A new global dataset of phase synchronization of temperature and precipitation Z. Sun, Z. Ouyang, X. Zhang, and W. Ren https://doi.org/10.11922/sciencedb.642

Zhigang Sun et al.
Viewed  
Total article views: 256 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
220 31 5 256 8 2 3
  • HTML: 220
  • PDF: 31
  • XML: 5
  • Total: 256
  • Supplement: 8
  • BibTeX: 2
  • EndNote: 3
Views and downloads (calculated since 23 Oct 2018)
Cumulative views and downloads (calculated since 23 Oct 2018)
Viewed (geographical distribution)  
Total article views: 256 (including HTML, PDF, and XML) Thereof 254 with geography defined and 2 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved  
No saved metrics found.
Discussed  
No discussed metrics found.
Latest update: 18 Nov 2018
Download
Short summary
The phase synchronization of temperature and precipitation helps to regulate vegetation distribution and productivity across global lands. However, it has been rarely considered in previous studies. We proposed a synchronization index of temperature and precipitation (SI-TaP), generated a global 60-year dataset of SI-TaP using meteorological forcings, and then investigated its climatology and contribution to global vegetation productivity.
The phase synchronization of temperature and precipitation helps to regulate vegetation...
Citation
Share