Interactive comment on “The Global Methane Budget 2000–2017” by Marielle Saunois et al.

Tonatiuh Guillermo Nuñez Ramirez
tnunez@bgc-jena.mpg.de

Received and published: 23 September 2019

The emission estimates for the decade of 2000-2009 in Saunois 2016 have larger ranges than in Saunois 2019. I think, if the GCP condenses all information that exists, there should be at least a table explaining which studies were left out and why as supplementary information.

A major problem with the bottom-up budget is that it is so much larger than the top-down estimate. The border between wetlands and other fresh water systems is very fuzzy and more discussion is required. Historically wetlands have been classified as bogs, fens, swamps, floodplains, and shallow lakes (Bartlett 1993). For example lake Chapala, Mexico’s largest lake, has a maximum depth of 2 m, is it a wetland or a lake? Is a floodplain to be considered a wetland or a freshwater system? For example, in the Amazon inundation can vary for several meters. Furthermore, in the Eastern Amazon,
emissions tend to be larger as river flow starts to decrease in August and September (Devol 1988, Beck 2012, Ringeval 2014, Basso 2016). This seasonal maximum is not capture by any of the WETCHIMP models, which instead show a maximum between January and April (Ringeval 2014). Ringeval (2014) were able to reproduce a seasonal cycle of CH4 emissions from the Amazon mainstream that was more similar to observations by using output from a hydrology model to identify floodplains. Furthermore, from your description it seems you classify as wetlands as saturated soils and fresh water systems can be lakes, rivers, reservoirs. Early studies, e.g. Devol (1988, 1990), Bartlett (1988, 1990), Tathy 1992, Keller 1994 and Melack (2004) made measurements both over saturated soils, emergent plants and open water. These early studies were used to calibrate many models, for example, in Spahni (2011), the LPJ-Bern model was calibrate to match the seasonal cycle from an inverse modeling estimate. Furthermore, DelSontro et al. (2018) has very high emissions but is stratification and transport within a lake were not taken in consideration. For example, lakes in East Africa are highly stratified and anoxic below the mixed layer but the amount of emissions estimated by DelSontro (2018) is difficult to bring in agreement with satellite CH4 cartographies (e.g. Frankenberg, 2011). they do not emit high quantities of methane continuously due to the same stratification of the water column. Is the future of CH4 emission modeling the merging of dynamic vegetation models with hydrology models?

With respect to the soil sink, your estimates are based on published model estimates. However, in these models, the sink strength depends on atmospheric mixing ratio (often a global constant value). For example, in the Curry (2007) model, the flux \(j \) is

\[
j = C_0 \times g_0 \times r_w \times r_c \times \sqrt{D \times k}
\]

where \(C_0 \) [ppm] is the \(CH_4 \) mixing ratio and \(g_0 \) is a conversion factor from ppm to mass units. Taking this into account, the sink becomes much larger may become much larger and changes in time in proportion to the atmospheric abundance. Furthermore, both Ridgwell (1999) and Curry (2007) had use the ideal gas law to set the \(g_0 \) parameter to 610 and 578 assuming a pressure of 100 kPa and temperatures of 0°C and 15°C.
respectively. By determine the g0 per gridcell based on monthly temperatures and pressure, the g0 ranges between 320 and 750.

Additionally, there are important contribution from Hackstein (1994, 1996, 2006) concerning potentially large emissions from wild terrestrial vertebrates and three arthropod taxa apart from termites.

In the future, it would be useful to also have estimates of the year-to-year variability for wetlands and OH in order to understand what drove the observed year-to-year variability of the growth rate.

References

Beck, V. (2012). Determination of the methane budget of the Amazon region utilizing airborne methane observations in combination with atmospheric transport and vegeta-

