
1 
 

Supplement to: 
  
GRACE-REC: a reconstruction of climate-driven water storage 
changes over the last century 
Vincent Humphrey1,2, Lukas Gudmundsson1 5 
1 Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland 
2 Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, 
CA, USA 
Correspondence to: Vincent Humphrey (vincent.humphrey@env.ethz.ch) 

Contents 10 

- Supplementary Text S1 

- Supplementary Figures S1-S4 

Supplementary Text S1 - Derivation of the TWS state at equilibrium (Eq. 5 of main manuscript) 

In the main manuscript, the equation representing the TWS response to temporal changes in precipitation 

and residence time (Eq. 1) is the following 15 

 TWS t = TWS t − 1 ∙ e*
+
,(.) + P t  (S1) 

 

where 𝑡  is a daily time vector, 𝑇𝑊𝑆 𝑡  is the storage, 𝑃(𝑡) is the precipitation input and 𝜏(𝑡) is the 

residence time of the water store. Also consider that e*
+
,(.) is always larger than 0 and smaller than 1 in 

our application (as the residence time 𝜏 is at least larger than zero and not infinite). 20 

This function requires to arbitrarily choose the state of TWS at the start of the simulation (i.e. the initial 

condition of TWS at t=0). If storage is assumed to be empty (i.e. TWS(0)=0), a spin-up period is necessary 

before the water store saturates around some average equilibrium value (Figure S1a). In previous work, 

the first 6 years of simulation had to be discarded because of this spin-up period (Humphrey et al., 2017). 
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Here, our goal is to estimate an equilibrium value for TWS which we can use as a more realistic initial 

condition than TWS(0) = 0. 

As a first approximation, let us reformulate equation (1) with the assumption of a mean precipitation input 

and a mean residence time. 

 5 

𝑝 = 𝑀𝑒𝑎𝑛 𝑃 𝑡  (S2) 

𝑘 = 𝑀𝑒𝑎𝑛 e*
+
, .  (S3) 

TWS t = TWS 𝑡 − 1 ∙ 𝑘	 + 𝑝 (S4) 

 

The result of this approximation can be seen in Figure S1b, and the equilibrium value obtained at the end 10 

of this simulation is 88.55 mm, which is very close to the average TWS value of Figure S1a (88.97 mm 

over the period 1984-2016). 

In order to obtain a more practical analytical solution to equation (4), the iterative equation can be 

reformulated as a first-order linear ordinary differential equation: 

 15 
?@AB
?C

= − 1 − 𝑘 	TWS + 𝑝 (S5) 

 

The solution of which is: 

 

TWS = 𝑐E𝑒* E*F C + G
E*F

 (S6) 20 

 

Because 𝑘 is always between 0 and 1 as mentioned earlier, the equilibrium value of TWS when 𝑡 → ∞ 

(called TWS0), is simply the right-hand term of Eq. (6): 

TWSJ =
G
E*F

 (S7) 

 25 

Which corresponds to equation 5 of the main manuscript. 
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Supplementary Figures S1 – S4 

 

 
Figure S1. Same illustrative data as the one used in Figure 1 of the main manuscript, in units of mm TWS. 5 

a) resulting TWS variability when using Equation (1) with TWS(0)=0 as initial condition. The spin-up 

period can clearly be seen at the beginning of the time series. b) estimation of the equilibrium TWS based 

on Equation (4). c) resulting TWS variability when using Equation (1) with TWS(0)=TWS0 as initial 

condition (i.e. using the equilibrium TWS as initial condition). 
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Figure S2. Linear trends obtained over the period 2003-2014 for the GRACE JPL Mascons and for the 

three associated reconstructions. 
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Figure S3. Linear trends obtained over the period 2003-2014 for the GRACE GSFC Mascons and for the 

three associated reconstructions. 
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Figure S4. Linear trends obtained over the period 2003-2014 for the 8 WRR2 models. 

 

 


